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Ganesh Ajjanagadde, Yury Polyanskiy

Department of EECS, MIT, Cambridge, MA, 02139
email: {gajjanag,yp}@mit.edu

Abstract—This paper discusses a possible program for improving
the outer (converse) bounds on the finite-blocklength performance of
multiple-access codes. The program is based on a certain conjecture
involving Rényi entropy of a sum of two independent binary vectors.
Some partial results towards showing the conjecture are presented. The
problem of bounding the joint Rényi entropy in terms of the marginal
entropies is addressed.

I. INTRODUCTION

Consider the following noiseless multiple-access channel, or adder
MAC:

Y = A+B, A,B ∈ {0, 1}, Y ∈ {0, 1, 2} .

The capacity region of all MACs was found classically by Ahslwede
and Liao [1], [2]. For the adder MAC we have

R1 ≤ log 2, R2 ≤ log 2, R1 +R2 ≤
3

2
log 2 .

Let us state explicitly what this means. Given a pair of subsets
C1, C2 ⊂ {0, 1}n the probability of error ε is defined as

ε(C1, C2) , 1− |C1 + C2||C1||C2|
and measures the average multiplicity of elements of the sumset C1+
C2. Given n and ε we define

M∗(n, ε) , max{|C1| · |C2| : ε(C1, C2) ≤ ε} .

The results of Ahslwede and Liao state:

lim
ε→0

lim
n→∞

1

n
logM∗(n, ε) =

3

2
log 2 .

Later improvements of Dueck and Ahlswede [3], [4] show:

logM∗(n, ε) ≤ 3n

2
log 2 +Kε

√
n logn , (1)

where Kε > 0 is a constant. Using random coding and estimates
similar to those in [5] it is easy to show

logM∗(n, ε) ≥ 3n

2
log 2−

√
n

2
Q−1(ε) +O(logn) , (2)

where Q−1(ε) is the standard normal quantile function.
The state-of-the-art summarized by (1)-(2) is quite unsatisfactory.

First, the sign of the second-order term is not clear. Second, even for
ε = 0 the best known upper-bound, cf. [6], is a rather simple

logM∗(n, 0) ≤ 3n

2
log 2 ,

obtained by maximizing the entropy H(X1 +X2) over X1 ⊥⊥ X2.
Third, and perhaps most importantly, if it happens that the random-
coding estimate (2) provides a correct second-order term, it would
be a very strong indicator that random-like signaling is not only
sufficient but also necessary for optimal communication. Indeed, note
that appearance of the

√
n-type second-order terms, cf. [5], [7], has so

far been purely due to the i.i.d.-randomness of the channel noise. The
adder MAC does not have any channel noise, so the

√
n-type second-

order can only arise from randomness of the multi-user interference.

The present paper outlines our program aimed at improving upper
bound (1). Although not successful yet, we think some of our partial
results are nevertheless of interest.

II. MAIN RESULTS

The main idea is to follow the general method proposed in [8] (and
even earlier in the quantum community): In order to prove the strong
converse it is sufficient to maximize the Rényi mutual information
Kλ, defined in [9]. In the context of the adder MAC, we do not need
the more complicated definition of Kλ as it coincides with the Rényi
entropy:

Hα(X) ,
1

1− α log
∑
x

[PX(x)]α .

Our main conjecture is the following:

Conjecture 1. For any An ⊥⊥ Bn taking values in {0, 1}n

Hα(A
n +Bn) ≤ nHα(Y ∗) ∀α ∈ [0, 1) (3)

where PY ∗ = [ 1
4
, 1
2
, 1
4
].

By [8, (32),(60)], Conj. 1 implies

logM∗(n, ε) ≤ 3n

2
log 2 +O(

√
n)

an improvement of (1).
Note that Y ∗ can only be generated by channel inputs A and B

that are i.i.d Bernoulli( 1
2
). We first offer a proposition establishing

the truth of Conj. 1 for n = 1:

Proposition 1. For all A ⊥⊥ B ∈ {0, 1} and α ∈ [0, 1],

Hα(A+B) ≤ Hα(Y ∗). (4)

We also prove Conj. 1 for n = 2, α ≤ 0.5:

Proposition 2. For all A2 ⊥⊥ B2 ∈ {0, 1}2 and α ∈
[
0, 1

2

]
,

Hα(A
2 +B2) ≤ 2Hα(Y

∗). (5)

We prove some results of secondary importance regarding the setup
of Conj. 1, and adder MAC’s in general. We show why it is essential
to take α < 1 for Conj. 1:

Proposition 3. For all α > 1, there exists a A2 ⊥⊥ B2 satisfying:

Hα(A
2 +B2) > 2Hα(Y

∗).

One might believe that for general adder MAC’s (Y = A + B),
H(Y ) is maximized at PA and PB both being uniform. Here is a
proposition showing this to be false:

Proposition 4. Consider alphabet X = (0, 1, 2, . . . ,m), and let PA
and PB be two distributions on it. Consider the channel Y = A+B.
Then, for m ≥ 2, α ∈ (0,∞), Hα(Y ) is not maximized with PA and
PB being uniform distributions.

Conj. 1 is nontrivial since although

H(PXY ) ≤ H(PX) +H(PY ) (sub-additivity),



∀α /∈ {0, 1}, cf. [10]:

Hα(PXY ) � Hα(PX) +Hα(PY ). (6)

This prevents the application of the standard single-letterization. In
Section IV, we address this issue in greater depth, and prove Thm. 1
and Thm. 2 that try to address this issue. Unfortunately, neither of
these resolve Conj. 1.

III. PROOFS

A. Blocklength n = 1

In order to prove Prop. 1, we establish a lemma which characterizes
the possible single-letter channel output distributions:

Lemma 1. Let PY be (r0, r1, r2) on (0, 1, 2) respectively. Then, PY
is a channel output distribution iff

√
r0 +

√
r2 ≤ 1.

Proof. Let PA be (p, 1 − p) and let PB be (q, 1 − q) on (0, 1)
respectively. Necessity follows via Cauchy-Schwarz:

(
√
r0 +

√
r2)

2 =
(√

pq +
√

(1− p)(1− q)
)2

≤ (p+ (1− p))(q + (1− q))
= 1.

Now we show sufficiency. From the channel model, we see that p, q
are roots of the quadratic equation:

f(x) = x2 − (r0 − r2 + 1)x+ r0 = 0. (7)

The roots of (7) are in [0, 1] iff its discriminant is nonnegative:

(r0 − r2 + 1)2 ≥ 4r0 (8)

⇔
√
r0 +

√
r2 ≤ 1. (9)

This equivalence follows from repeated squaring.

We now return to the proof of Prop. 1. Here, and subsequently, we
use the following definition of “trading mass”:

Definition 1. q ≺ p with respect to the partial order of majorization
iff q may be derived from p by successive applications of linear
transformations T ( [11, 2.19 Lemma 2]) mapping vector p to p′

in Rn as follows: p = (p0, p1, . . . , pn), p′ = (p0, . . . , pi−1, pi −
ε, pi+1, . . . , pj−1, pj+ ε, pj+1, . . . , pn), where without loss pi ≥ pj ,
and we ensure ε ≤ |pi−pj |

2
. We call such T “trading mass”.

Proof of Prop. 1. “Trading mass” between r0, r2 increases Rényi
entropy until

√
r0 +

√
r2 = 1, implying:

pA = (p, 1− p), pB = (p, 1− p)

for some p ∈ [0, 1]. It hence suffices to show that:(
p2
)α

+
(
(1− p)2

)α
+ (2p(1− p))α (10)

is maximized at p = 0.5, and without loss assume p ≤ 0.5 by
symmetry. The proof of (10) proceeds in two steps. First, we show
that we can reduce to p ∈ [0.25, 0.5] via majorization. Then, we
analyze this interval more carefully by bounding expressions occuring
in d

dp
. For the first step, observe that when p < 0.25, (p2 < 2p(1−

p) < (1 − p)2) majorizes (0.25 ≤ 0.25 < 0.5). We now analyze
p ∈ [0.25, 0.5] more carefully. Expanding the derivative, we get

1

2α

d

dp
= p2α−1 − (1− p)2α−1 + (1− 2p)(2p(1− p))α−1. (11)

First of all, if α ≤ 0.5, p2α−1 − (1 − p)2α−1 ≥ 0, yielding no
stationary points apart from p = 0.5. Thus, we may now restrict to

α > 0.5. Here, consider f(x) = x2α−1 and apply Lagrange’s mean
value theorem to get for some c ∈ (p, 1− p):

(1− p)2α−1 − p2α−1

(1− p)− p = (2α− 1)c2α−2

≤ (2α− 1)p2α−2.

Thus, from (11) it suffices to show that:(
2(1− p)

p

)α−1

> 2α− 1.

But we have:
2(1− p)

p
≤ 6

reducing our task to:
6α−1 ≥ 2α− 1. (12)

But (12) is clear, since at α = 1, we have equality, for α = 0.5, we
have strict inequality, and

d

dα
(6α−1 − (2α− 1))

= 6α−1 ln(6)− 2

≤ ln(6)− 2

< 0

giving (12). Thus, we have shown that 0.5 is the only stationary
point. Since the maximum is not attained on boundary, and we have
a continuous function over a compact set, 0.5 indeed yields the
maximum. This completes the proof.

B. KL divergence to product measures

Conj. 1 is a statement about the set of all distributions that arise
at the output of an adder MAC, namely:

Pn , {PY n : Y n = An +Bn, An ⊥⊥ Bn ∈ {0, 1}n}.

Here we provide information about Pn in terms of its KL divergence
to product distributions. These may be used in large deviations
analysis of this channel via Sanov’s [12] and related theorems. In the
propositions of this subsection, we make use of Lemma 1 repeatedly.

Proposition 5. Let PV = (v0, v1, v2). Then,

min
P∈Pn

D(P ||PV n) = nD(PY
∗||PV ),

where

PY ∗ =

{
(p2, 2p(1− p), (1− p)2) if

√
v0 +

√
v2 ≤ 1

PV otherwise

with p satisfying:

22p−1v0
pv2

p−1(1− p)
(1− v0 − v2)2p−1p

= 1. (13)

Remark: If v0 = v2 = v, and v ∈
[
0.25, 1

3

]
, we obtain PY ∗ =

(0.25, 0.5, 0.25), and

min
P∈Pn

D(P ||PV n) = n(−1.5− 0.5 log(v(1− 2v))).

Remark: Note that the solution to (13) may not be unique, in which
case Prop. 5 does not specify p. Conditions can be derived for the
uniqueness in special cases of interest, such as v0 = v2 = v.

Proof. It suffices to examine the single letter case, since:

D(PY n ||PV n) ≥
n∑
i=1

D(PYi ||PV ). (14)



For
√
v0 +

√
v2 ≤ 1, we may apply Lemma 1 to conclude that

PV ∈ Pn, giving the result.
Now assume

√
v0 +

√
v2 > 1. Let PA = (p, 1 − p) and PB =

(1− q, q). The divergence expression is:

g(p, q) = p(1− q) log
[
p(1− q)
v0

]
+ q(1− p) log

[
q(1− p)
v2

]
+ (1− p− q + 2pq) log

[
1− p− q + 2pq

1− v0 − v2

]
. (15)

Setting ∂g
∂p

= ∂g
∂q

= 0, we get

(−1 + 2q) log

[
1− p− q + 2pq

1− v0 − v2

]
+ (1− q) log

[
p(1− q)
v0

]
− q log

[
(1− p)q
v2

]
= 0. (16)

and

(−1 + 2p) log

[
1− p− q + 2pq

1− 2v

]
+ (1− p) log

[
q(1− p)
v2

]
− p log

[
(1− q)p
v0

]
= 0. (17)

Adding (16) and (17), we get

(−2 + 2p+ 2q) log

[
1− p− q + 2pq

1− v0 − v2

]
+

(1− p− q) log
[
pq(1− p)(1− q)

v0v2

]
= 0. (18)

Suppose p+ q 6= 1. Then we have(
1− p− q + 2pq

1− v0 − v2

)2

=
pq(1− p)(1− q)

v0v2
. (19)

which we claim leads to a contradiction. We know that

√
v0 +

√
v2 ≥ 1⇒ 4v0v2 > (1− v0 − v2)2. (20)

Also, we have:

[(1− p− q) + (2pq)]2 ≥ 4pq(pq + 1− p− q)
= 4pq(1− p)(1− q). (21)

The two inequalities (20) and (21) contradict (19) as desired. Thus,
p + q = 1, and therefore (16) and (17) become after simplification
the required (13).

Remark: Similarly, one may consider a divergence minimization
problem with the arguments of divergence exchanged. The single-
letterization step, (14), is no longer valid. Nevertheless, for n = 1
it is possible to compute the exact value:

min
P∈P1

D(PV ||P ) = D(PY
∗||PV ),

where

PY ∗ =

{
(p2, 2p(1− p), (1− p)2) if

√
v0 +

√
v2 ≤ 1

PV otherwise

and

p =
1 + v0 − v2

2
.

C. Blocklength n = 2

We now move to n = 2, where we prove Prop. 2.

Proof of Prop. 2. Let PA2 = (p0, p1, p2, p3) and likewise PB2 =
(q0, q1, q2, q3). The labelling is based on base two representation
(0→ 00, 1→ 01, 2→ 10, 3→ 11). Then, our conjecture is:

(p0q0)
α + (p1q1)

α + (p2q2)
α + (p3q3)

α + (p0q1 + p1q0)
α

+(p0q2 + p2q0)
α + (p1q3 + p3q1)

α + (p2q3 + p3q2)
α

+(p0q3 + p1q2 + p2q1 + p3q0)
α ≤ 1

4α
+

4

8α
+

4

16α
(22)

The idea is essentially “trading mass”. We “equalize” (p0, p3) and
(q0, q3) simultaneously. By “equalizing”, we mean that we replace a
pair (a, b) by

(
a+b
2
, a+b

2

)
. We claim that this increases the left hand

side of the inequality. Observe that (p0q1+p1q0)+ (p1q3+p3q1) is
invariant under this operation. Likewise, (p0q2+p2q0)+(p2q3+p3q2)
is also invariant under this operation. Moreover, it is clear that the
terms p0q1+p1q0 and p1q3+p3q1 have been “equalized”. Similarly,
p0q2 + p2q0 and p2q3 + p3q2 have been “equalized” as well. Thus,
we have increased the sum of the corresponding four terms of (22).
The terms p1q1 and p2q2 are unaffected by this operation. Thus, for
the above claim, it suffices to check that the sum of the remaining
three terms in (22) has not decreased. For this, observe that if (p0, p3)
and (q0, q3) are “opposite sorted” (terminology that is used regarding
rearrangements of sequences, see e.g [11, Section 10.1]), we have a
successful majorization:(

p1q2 + p2q1 + 2 p0+p3
2

q0+q3
2
≥ p0+p3

2
q0+q3

2
≥ p0+p3

2
q0+q3

2

)
is majorized by
(p1q2 + p2q1 + p0q3 + p3q0 ≥ p0q0?p3q3),
where ‘?’ denotes an intermediate inequality that is not needed to

have a definite direction for the majorization to hold.
In the case of similar sorting, by the rearrangement inequality [11,

Thm. 368], it follows that the term p0q3 + p1q2 + p2q1 + p3q0 has
not decreased. Thus, it suffices to check that (p0q0)α + (p3q3)

α has
increased. For this, we depend critically on α ≤ 0.5.

By normalizing, we may assume that p0 + p3 = q0 + q3 = 2
without loss of generality, since the desired inequality is homogenous.
Thus, it suffices to check that for any variables w, x, y, z such that
w + z = x+ y = 2, and α ≤ 0.5, we have:

(wx)α + (yz)α ≤
√

(w2α + z2α)(x2α + y2α)

≤
√

(w + z)(x+ y) ≤ 2,

using α ≤ 0.5 as desired.
Thus, we have the claim that the “0-3” equalization can’t decrease

the left hand side when α ≤ 0.5. By symmetry, we may follow the “0-
3” equalization by a “1-2” equalization to further not decrease the left
hand side. Thus, for (22) (under α ≤ 0.5), it suffices to prove (22)
for for all choices of 0 ≤ p, q ≤ 0.5, where A2 takes the p.m.f
(p, 0.5−p, 0.5−p, p), and B2 takes the p.m.f (0.5−q, q, q, 0.5−q).

Let ~y denote the channel output distribution for the above A2 and
B2. Then,
~y = (2p(0.5 − q) + 2q(0.5 − p), pq + (0.5 − p)(0.5 − q), pq +

(0.5 − p)(0.5 − q), pq + (0.5 − p)(0.5 − q), pq + (0.5 − p)(0.5 −
q), p(0.5− q), p(0.5− q), q(0.5− p), q(0.5− p)).

Suppose 2p(0.5 − q) + 2q(0.5 − p) ≤ 0.25. Then, the equation
4r(0.5 − r) = 2p(0.5 − q) + 2q(0.5 − p) has a solution in 0 ≤
r ≤ 0.5. In this case, consider A∗2 = (r, 0.5 − r, 0.5 − r, r) and
B∗2 = (0.5− r, r, r, 0.5− r) respectively. Then, the channel output
is:



~y∗ = (4r(0.5− r), r2 + (0.5− r)2, r2 + (0.5− r)2, r2 + (0.5−
r)2, r2 +(0.5− r)2, r2 +(0.5− r)2, r(0.5− r), r(0.5− r), r(0.5−
r), r(0.5− r)).

This effectively “matches” the desired ~y. More precisely, it is clear
that the first term is the same in both vectors; r(0.5−r) is the average
of the sum of the last 4 terms of ~y; and hence in fact the first five
terms are the same in both vectors.

Putting these claims together, we have that ~y∗ is majorized by ~y
in this case.

Now suppose 2p(0.5−q)+2q(0.5−p) > 0.25. Then, the equation
2r2 + 2(0.5 − r)2 = 2p(0.5 − q) + 2q(0.5 − p) has a solution in
0 ≤ r ≤ 0.5. In this case, consider A∗∗2 = (r, 0.5 − r, 0.5 − r, r)
and B∗∗2 = (r, 0.5 − r, 0.5 − r, r) respectively. Then, the channel
output is:

~y∗∗ = (2r2 + 2(0.5 − r)2, 2r(0.5 − r), 2r(0.5 − r), 2r(0.5 −
r), 2r(0.5− r), r2, r2, (0.5− r)2, (0.5− r)2).

We claim that this effectively “matches” the desired ~y. The first
term is the same in both vectors by the choice of r. Also, the sum
of the last four terms is the same in both vectors. Thus, the first five
terms are the same in both vectors.

We now claim that |r2 − (0.5− r)2| ≤ |p(0.5− q)− q(0.5− p)|.
This claim shows that (r2, (0.5−r)2) can be obtained by “trading

mass” between (p(0.5− q), q(0.5− p)).
We now prove the claim.
For ease of dealing with absolute values, we assume without loss

of generality that r ≥ 0.25 and p ≥ q.
Using the fact that r and 0.5− r are the two roots of a quadratic

x2 + (0.5− x)2 = p(0.5− q) + q(0.5− p), and simplifying, we see
that this is equivalent to:√

4p+4q−16pq−1
2

≤ p− q.
Squaring both sides, it suffices to show that:
4p2 + 4q2 − 4p− 4q + 8pq + 1 ≥ 0, or equivalently,
(2p+ 2q − 1)2 ≥ 0, which is clearly true.
Collecting all these claims, we see that ~y∗∗ is majorized by ~y in

this case.
Altogether, we have now reduced the task to proving two single

variable inequalities, one corresponding to ~y∗, and the other corre-
sponding to ~y∗∗ parametrized by the variable r.

These single variable inequalities are easy to establish by derivative
tests, similar to the proof of Prop. 1. Thus, we have resolved the
conjecture when n = 2, α ≤ 0.5.

D. Counterexamples for α > 1 and non-binary cases

We prove Prop. 3 which shows why α ≤ 1 is essential to Conj. 1:

Proof of Prop. 3. Take

PA2 = (0.5− p, p, p, 0.5− p), PB2 = (p, 0.5− p, 0.5− p, p)

for 0 ≤ p ≤ 0.5. We examine

2(1−α)Hα = 4(p(0.5−p))α+4(p2+(0.5−p)2)α+(4p(0.5−p))α.

Then from a derivative test (with respect to p) it is clear that p =

0.25 is a stationary point. However, d2

dp2
= −25−4α(2α − 2)2α <

0 for α 6= 1. This shows that for α > 1, the Rényi entropy is
actually at a local minimum at p = 0.25, completing the proof of
this proposition.

Note that the construction for n = 2 can be combined with an
independent collection of product measures (over n−2 channel uses)
to generate counterexamples for all n ≥ 2, α > 1.

We now prove Prop. 4 which demonstrates that for general adder
MAC’s, capacity achieving input distributions are not necessarily
uniform:

Proof of Prop. 4. Fix PB to be uniform. Then, we claim that PA
is not uniform at optimality. Suppose not, then PY is a triangle
shaped distribution (convolution of two rectangles). For PA =
(p0, p1, . . . , pm), “trade mass” slightly between p0 and p1 to make
p0 > p1 while keeping p0+p1 fixed. Then, only two elements of PY
are affected, namely the two that are proportional to p0 and 1− p0.
But by this “mass trade”, we have moved (p0, 1 − p0) closer to
(0.5, 0.5), so the entropy must have increased. Note that since the
above proof only relies on majorization, this works for any Hα with
α ∈ (0,∞).

The above proof suggests that when there is a large amount of
“additive energy”, uniform input distributions do not maximize output
entropy.

IV. GENERAL CONJECTURE AND ADDITIVITY OF RÉNYI

ENTROPY

In Section II, it was remarked that sub-additivity fails for Rényi
entropy (6). In fact, more is true. It turns out that one can fix Hα(PX)
and Hα(PY ) and make Hα(PXY ) ↗ ∞ (∀α ∈ (0, 1)) [13].
Also, ∀α ∈ (1,∞), there does not exist a non-trivial homogeneous
inequality involving Rényi entropies of order α [14]. Nevertheless,
some estimates resembling sub-additivity can be made, such as the
following theorem:

Theorem 1.

Hα(PXY ) ≤ Hα(PX) +H 1
α
(PYα) (∀α ≥ 0), (23)

where

P[Yα = y] =
∑
x

PXY (x, y)
α exp[(α− 1)Hα(X,Y )].

More generally, for any 0 < u < v <∞, we have:

1− u
u

Hu(X,Y ) +
v − 1

v
Hv(X,Y ) ≤(

1

u
− 1

v

)
(Hu

v
(Xv) +H v

u
(Yu)). (24)

Proof. The summation form of Minkowski’s inequality for mixed
lu, lv norms gives for 0 < u < v <∞:∑

y

(∑
x

puij

) v
u

 1
v

≤

∑
x

(∑
y

pvij

)u
v

 1
u

. (25)

Using
∑
i pi

α = exp((1 − α)Hα(P )) and simplifying (25), we
get (24).

Note that the right hand sides of (23) and (24) are not functions
of marginals of PX , PY and thus cannot be used in an induction to
prove Conj. 1. Below, we discuss an alternative bounding technique in
terms of tilted marginals. The idea is that with sufficient tilt towards
the uniform, the Rényi entropy can be boosted significantly.

First, we define what we mean by exponential tilting towards the
uniform distribution:

Definition 2. Let P = (p1, p2, . . . , pN ) denote a probability vector
on N atoms. Define P β = 1

Z

(
pβ1 , p

β
2 , . . . , p

β
N

)
, where

Z =

N∑
i=1

pβi



is a normalization constant. We call P β the “β-tilt of P”.

Note that this is a special form of the standard exponential tilting
encountered in information geometry, large deviations, etc.

Definition 3. Define the set of allowable tilts

Tα,n = {β : ∀Xn Hα(X
n) ≤

n∑
i=1

Hα(PXi
β)}. (26)

Note that 0 ∈ Tα,n since P β=0 is a uniform distribution.
We now prove a lemma which relates the Rényi entropy of the

“β-tilt of P ” to Rényi entropies of two different orders, namely αβ
and β:

Lemma 2. For all α ∈ [0,∞)\{1}, β ∈ [0,∞), we have:

Hα(P
β) =

1− αβ
1− α Hαβ(P )− α(1− β)

1− α Hβ(P ). (27)

Proof.

Hα(P
β) =

1

1− α log

(
1

Zα

(
n∑
i=1

pi
βα

))
= − α

1− α log(Z) +
1− αβ
1− α Hαβ(P )

= −α(1− β)
1− α Hβ(P ) +

1− αβ
1− α Hαβ(P ).

Thus our approach also probes inequalities involving Rényi en-
tropies of two different orders, namely αβ and β.

The sets Tα,n turn out to have one of the two forms: Tα,n = [0, t),
or Tα,n = [0, t]. This is intuitively clear, since tilting towards the
uniform should increase entropy monotonically. The formal proof
follows from the following lemma:

Lemma 3. For all α ≥ 0, Hα(P β) is non-increasing with β.
Moreover, it is strictly decreasing unless P is uniform.

Proof.

d

dβ
Hα(P

β) ≤ 0

⇔ α

1− α

(∑n
i=1 p

αβ
i log(pi)∑n
i=1 p

αβ
i

−
∑n
i=1 p

β
i log(pi)∑n
i=1 p

β
i

)
≤ 0.

Thus, it suffices to prove that

f(β) =

∑n
i=1 p

β
i log(pi)∑n
i=1 p

β
i

is non-decreasing in β, and strictly increasing unless P is uniform.
For this, note that numerator of d

dβ
f(β) is:(

n∑
i=1

pβi (log(pi))
2

)(
n∑
i=1

pβi

)
−

(
n∑
i=1

pβi log(pi)

)2

≥ 0

by the Cauchy-Schwarz inequality, and equality holds iff P is
uniform, as desired.

Combining Lemma 3 with the fact that Rényi entropy is not sub-
additive for α /∈ {0, 1}, we now have the fact that {0} ⊆ Tα,n ⊆
[0, 1) for such α.

The next simple result is the following:

∀α > 1 :
1

α
∈ Tα,n . (28)

Indeed, consider the chain
n∑
i=1

Hα(PXi
1
α ) =

n∑
i=1

H 1
α
(PXi)

≥
n∑
i=1

H(PXi)

≥ H(PXn)

≥ Hα(PXn) (29)

by Lemma 2 together with the monotonicity of Rényi entropy with
respect to its order α [15, Prop. 5.3.1].

The main result of this section (Thm. 2) states that asymptotically
as n → ∞, the estimate (28) is the best possible for α > 1. It also
demonstrates that for α ∈ (0, 1), as n → ∞, no nontrivial tilt is
allowed.

Theorem 2.

∀α ∈ (0, 1) sup(Tα,n) ∈
[
0,

1

n− (n− 1)α

]
. (30)

∀α ∈ (1,∞) sup(Tα,n) ∈
[
1

α
,
1

n
+
n− 1

nα

]
. (31)

We also have the special cases:

T0,n = [0,∞). (32)

T1,n = [0, 1]. (33)

T∞,n = {0}. (34)

Corollary 1. As n→∞,

Tα,n → {0} ∀α ∈ (0, 1). (35)

sup(Tα,n)→
1

α
∀α ∈ (1,∞). (36)

In order to prove this result, we first explore the idea of what we
call “maximum Rényi entropy couplings”. First, we define what we
mean by couplings:

Definition 4. C(PX1 , PX2 , . . . , PXn) is called the set of couplings
with marginals PX1 , PX2 , . . . , PXn . It consists of all joint distribu-
tions PXn whose marginals are PX1 , PX2 , . . . , PXn .

From Definition 4, we define the maximum Rényi entropy cou-
pling:

Definition 5. Fix PX1 , PX2 , . . . , PXn , and also fix α. Then,

P ∗Xn = argmax
PXn∈C(PX1

,PX2
,...,PXn )

Hα(PXn)

is called the maximum Rényi entropy coupling of PX1 , PX2 , . . . , PXn
and order α.

Note that for α = 1, the maximum Rényi entropy coupling reduces
to the familiar product distribution

PX1 ⊗ PX2 ⊗ · · · ⊗ PXn
due to the sub-additivity of Shannon entropy, where ⊗ denotes
the product measure. Moreover, for any order α, computation of
the maximum Rényi entropy coupling is a convex optimization
problem due to the concavity of Rényi entropy with respect to
the underlying distribution. Concavity of Rényi entropy also yields
the statistically pleasing property of exchangeability (see e.g [16]
for a discussion of exchangeability) as follows. Consider a discrete
vector valued random variable (X1, X2, . . . , Xn). Suppose one has



some prior information that certain indices are indistinguishable, i.e
PXi1 = PXi2 = . . . = PXim for some indices (i1, i2, . . . , im).
The principle of maximum entropy [17] suggests that in absence
of further information, one should use a maximum entropy prior
subject to the given constraints. However, the classical method of
maximizing the Shannon entropy results in forcing independence in
the prior. Statistically speaking, often one merely needs the idea of
exchangeability [18]. This means that in the example above, the
maximum entropy prior should be invariant under permutations of
the indices (i1, i2, . . . , iM ). However, this is always satisfied by the
Rényi entropy as well. Evaluation of the use of maximum Rényi
entropy priors in statistical settings is thus an intriguing question that
we do not consider here.

Our motivation in defining this notion of coupling is because it
represents the tightest gap in (26) for fixed right hand side marginals.
To give a flavor of subsequent analysis, we first prove Thm. 2 for
the only nontrivial special case, namely α =∞.

For this, we first prove an easy lemma:

Lemma 4.

H∞(PXY ) ≤ max(H∞(PX) +H0(PY ), H∞(PY ) +H0(PX)).

Proof. Recall that H∞(P ) = − log(max(pi)), and H0(P ) =
log(supp(P )). But we know that for all i, there must exist at least
one PXY (i, j) ≥ PX (i)

supp(PY )
. Likewise with j. Taking logarithms, one

gets the result.

Now consider the case when PX = PY = (p1, p2, . . . , pN ), where
without loss p1 ≥ p2 ≥ . . . ≥ pN . Now, if p1

N
≤ pN , we can create

a maximum Rényi entropy coupling (α =∞), i.e one that achieves
equality in the bound of Lemma 4. This may be done by taking
PXY (1, j) = PXY (i, 1) =

p1
N

for all 1 ≤ i, j ≤ N . The remaining
entries of PXY (i, j) with 2 ≤ i, j ≤ N may then be filled as a
diagonal matrix, with entries PXY (i, i) = pi − p1

N
. The validity of

this joint distribution follows from p1
N
≤ pN . Thus, in order to show

that T∞,2 = {0}, it suffices to find for any β > 0 (p1, p2, . . . , pN )
with p1

N
≤ pN , and:

(1− 2β)H∞(P ) + log(N) > 2(1− β)Hβ(P ). (37)

In order to do this we prove our first “Rényi entropy transition
lemma”:

Lemma 5. Let P = (p1, p1, . . . , p1,
p1
N
, p1
N
, . . . , p1

N
) where p1

occurs M = N1−β times, and normalization is ensured by taking
p1 = N

MN+N−M . Then,

Hα(P ) = (1− β) log(N) +O(1) ∀α ∈ [β,∞] .

Proof. Essentially, the proof uses a discrete version of Laplace’s
method (see e.g [19, Thm. 4.3.1]). More rigorously,

H∞(P ) = log

(
MN +N −M

N

)
= log(M + 1−N−β)
= (1− β) log(N) +O(1)

at α =∞. For α = β,

Hβ(P ) =
1

1− β

(
p1
β

(
M +

N −M
Nβ

))
=

β

1− β log

(
N

MN +N −M

)
+

1

1− β log(M +N1−β −N1−2β)

= −β log(N) + log(N) +O(1).

For α ≥ β, the entropy is sandwiched between the two, giving the
result.

Remark: While deriving this result, M was taken to be Nγ for
some 0 < γ < 1. We then optimized over γ to get a tight bound.
This taking of M = Nγ will recur in subsequent proofs.

(37) is now verified:

(1− 2β)H∞(P ) + log(N)− 2(1− β)Hβ(P )

= ((1− 2β)(1− β) + 1− 2(1− β)2) log(N) +O(1)

= β log(N) +O(1)

> 0.

Thus, we have proved that T∞,2 = {0}, implying T∞,n = {0} for
all n ≥ 2.

The remainder of the proof of Thm. 2 falls into two cases, namely
0 < α < 1 and 1 < α < ∞. For α = ∞, our proof used
a maximum Rényi entropy coupling to give a tight bound. In a
similar manner, our subsequent proof probes “good couplings” that
are possibly suboptimal in order to generate useful bounds. It turns
out that for 0 < α < 1, a slightly generalized version of the coupling
given in [13] gives the result. We take it up first.

Let PXi for 1 ≤ i ≤ n be identically distributed as (p1, p2, . . .),
where we assume without loss that pi are monotonically nonincreas-
ing. In particular, we have pn ≤ 1

n
for all n. Then the following

coupling is valid:

PXn(i1, i2, . . . , in) =
pN

Nn−1+δ
+ εi1,i2,...,in

for 1 ≤ i1, i2, . . . , in ≤ N .
εi1,i2,...,in ≥ 0 are chosen to make PXn a valid coupling, i.e

satisfy the marginal constraints. δ > 0 denotes a small number. But
then ∑

i1,i2,...,in

(PXn(i1, i2, . . . , in))
α ≥ Nn−(n−1+δ)αpN

α. (38)

Now let pN decay as N−γ for some γ > 1. In order to ensure that
the marginal entropies of orders αβ and β remain bounded, we need
the following constraints:

γ >
1

αβ
and γ >

1

β
. (39)

Since α < 1, the second constraint is redundant. Now, we will pick
γ so that the entropy of this coupling goes to∞. By the bound (38),
a sufficient condition is:

n− (n− 1 + δ + γ)α > 0 (40)

In the limit as δ ↘ 0, constraints (39) and (40) can be met
simultaneously if β > 1

n−(n−1)α
. This completes the proof of the

α < 1 case.
We now turn to the upper bound on β for the α > 1 case. Here,

we first compute analytically the maximum Rényi entropy coupling
for α = 2. To the best of our knowledge, this is the only 1 < α <∞



which yields the maximum Rényi entropy coupling in closed form.
The amenability of α = 2 for closed form analysis comes from the
fact that the Rényi entropy consists of a monotone transformation of a
quadratic form, and also because we optimize over affine constraints
with a simple structure. We then use this coupling to generate a bound
for all α > 1. Note that intuitively this bound should be tightest for
α = 2, and that its quality will be worse for α far away from 2.
Nevertheless, this bound suffices for our purposes, since even this
bound is asymptotically tight in the sense of Corollary 1.

First, we collect a direct application of the Karush-Kuhn-Tucker
conditions (see e.g [20, Prop. 5.49]) on the optimal coupling for
general α in the following lemma:

Lemma 6. Let α /∈ {0, 1,∞}. Suppose PXi for 1 ≤ i ≤ n are a
set of marginal distributions with full support. Then, suppose there
exists a PXn with full support satisfying the following constraints:

1) It is a member of C(PX1 , PX2 , . . . , PXn).
2) exp

[
(PXn)

α−1
]

is a product distribution. Here, the tilting
notation is as before, and

exp(P ) =
1

Z
(exp(p1), exp(p2), . . . , exp(pN ))

where Z is a usual normalization constant.

Then, such a P is the optimal Rényi entropy coupling of order α
over C(PX1 , PX2 , . . . , PXn).

We do not prove this result here, simply because we do not need
it for any subsequent proofs. In fact, as one can see, the general
case with loss of support is omitted from the statement. Lemma 6
is provided in order to motivate our choice of coupling that we use
for our bound (for α > 1). Nevertheless, we give a corollary of
Lemma 6 for the analytically solvable α = 2 case. This is because
it yields the coupling we are going to use, and also because it has a
certain elegance.

Lemma 7. Suppose α = 2 in above Lemma 6. Also, suppose support
constraints of Lemma 6 are met. Then, the optimal coupling P ∗ is
given by:

P ∗ = U1 ⊗ PX2 ⊗ PX3 ⊗ · · · ⊗ PXn
+ PX1 ⊗ U2 ⊗ PX3 ⊗ · · · ⊗ PXn
+

...

+ PX1 ⊗ PX2 ⊗ · · · ⊗ PXn−1 ⊗ Un
− (n− 1)U1 ⊗ U2 ⊗ · · · ⊗ Un. (41)

Here, Ui denote uniform random variables over the respective
alphabets of the PXi .

Note that even with a mildly decaying tail, Lemma 7 forces many
of the indices to have zero probability. This statement is for α = 2,
but we believe this loss of support is a general feature for α > 1
as well. Thus, Lemma 7 resolves some of the mystery of the loss of
support in maximum Rényi entropy distributions as illustrated by the
following numerical example. Numerically, for n = 3, α = 4, and
channel being the binary adder MAC, it appears that

PA∗ ≈ (0, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0)

PB∗ ≈ (0.256, 0.081, 0.081, 0.081, 0.081, 0.081, 0.081, 0.256)
(42)

is at least a local optimum.

This goes against the usual behavior one expects from a Shannon-
like measure, where it is advantageous to exploit all available degrees
of freedom. Our intuition that there is a sharp transition in behavior
from α < 1 to α > 1 is illustrated neatly by the upcoming “Renyi
entropy transition lemma” 8.

The astute reader may have noticed that the coupling we picked in
Lemma 5 was designed to be as “extreme” as possible, i.e it met the
necessary condition p1

N
≤ pN with equality. Furthermore, it yielded

a distribution with two distinct probabilities that asymptotically had
constant entropy held at (1 − β) log(N) for all orders α ∈ [β,∞].
Observe that Lemma 7 yields a similar such condition, namely:

pN ≥
d− 1

dN
.

The similarity of these two conditions lies in the fact that both enforce
p1
pN

= O(N). This is not surprising, since we are dealing with
α > 1 in either case. Nevertheless, the extremization here yields a
more interesting lemma, the second of our “Rényi entropy transition
lemmas”.

Lemma 8. Let P = (p1, p1, . . . , p1,
n−1
nN

, n−1
nN

, . . . , n−1
nN

) where n
is held fixed, p1 occurs M = Nγ times, and normalization is ensured
by taking p1 = 1

nM
+ n−1

nN
. Then,

Hα(P ) = γ log(N) +O(1) α ∈ (1,∞].

Hα(P ) = log(N) +O(1) α ∈ [0, 1).

The proof of this Lemma 8 is very similar to that of Lemma 5.

Proof. The case of α = 0 is clear since the distribution has full
support. The case of α =∞ is also simple:

H∞(P ) = − log(p1)

= − log

(
1

nM
+
n− 1

nN

)
= log(M) +O(1)

= γ log(N) +O(1).

For other α 6= 1,

Hα(P ) =
1

1− α log
(
M1−α(1 + (n− 1)Nγ−1)α

+ (n− 1)αN1−α − (n− 1)αNγ−α).
Here, the dominant term is M1−α if α > 1 and N1−α if α < 1.
Taking the logarithm, we thus get the desired result.

A natural question is what role does n play in this Lemma 8? It
turns out that n controls the Shannon entropy rate (α = 1), which
represents the boundary between the two regimes. Note that this result
is true in spite of the fact that for a fixed distribution, Rényi entropy
is continuous in its order α. Perhaps this result is a small instance
of a larger phenomenon, roughly saying that the Rényi entropies can
be controlled independently in the α < 1 and α > 1 regimes.

We now use Lemma 8 in our proof of Thm. 2 as follows. Consider
PXi identically distributed with distribution P of Lemma 8 for 1 ≤
i ≤ n. Let PXn be then distributed according to the coupling (41) of
Lemma 7. A “type” consists of all terms where p1 is chosen k out of
the n possible times, and n−1

nN
is chosen in the remaining n− k out

of the n possible times. Thus, there are n+1 types. The “size” of a
type is its cardinality multiplied by the individual probability in that



type raised to the power α. Formally, by expanding and simplifying
the expression for the Rényi entropy, we have:

Hα(PXn) =

1

1− α log

(
n∑
k=0

(N −M)n−kMk−α

(
n

k

)
N−α(n−1)

(
k

n

)α)
.

(43)

From (43), k = 1 is the dominant type, implying

Hα(PXn) = log
(
(N −M)n−1M1−αN−α(n−1)

)
+O(1)

= log
(
N (1−α)(n−1)+(1−α)γ

)
+O(1)

= (n− 1 + γ) log(N) +O(1). (44)

Now, since β > 1
α

((29)), we may invoke Lemma 8 to get:
n∑
i=1

Hα(P
β
Xi

) = n

(
1− αβ
1− α Hαβ(P )− α(1− β)

1− α Hβ(P )

)
= n

(
γ − α+ (1− γ)αβ

1− α

)
log(N) +O(1). (45)

Comparing (44) and (45) we get (for a β ∈ Tα,n)

n− 1 + γ ≤ n
(
γ − α+ (1− γ)αβ

1− α

)
⇔ γ

(
α+ (n− 1)− nαβ

α− 1

)
≤ α+ (n− 1)− nαβ

α− 1

⇔ α+ (n− 1) ≥ nαβ

⇔ β ≤ 1

n
+
n− 1

nα
. (46)

This completes the proof of Thm. 2.
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