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Abstract

This thesis explores the problems of learning analysis of variance (ANOVA) decom-
positions over GF(2) and R, as well as a general regression setup. For the problem of
learning ANOVA decompositions, we obtain fundamental limits in the case of GF(2)
under both sparsity and degree structures. We show how the degree or sparsity level
is a useful measure of the complexity of such models, and in particular how the sta-
tistical complexity ranges from linear to exponential in the dimension, thus forming
a “learning hierarchy”. Furthermore, we discuss the problem in both an “adaptive” as
well as a “one-shot” setting, where in the adaptive case query choice can depend on
the entire past history. Somewhat surprisingly, we show that the “adaptive” setting
does not yield significant statistical gains. In the case of R, under query access, we
demonstrate an approach that achieves a similar hierarchy of complexity with respect
to the dimension.

For the general regression setting, we outline a viewpoint that captures a variety
of popular methods based on locality and partitioning of some kind. We demonstrate
how “data independent” partitioning may still yield statistically consistent estimators,
and illustrate this by a lattice based partitioning approach.

Thesis Supervisor: Gregory Wornell
Title: Professor
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Chapter 1

Introduction

Statistical learning is a discipline with numerous applications across science and engi-

neering. The work and motivations differ across communities, and thus one encounters

a variety of terms: machine learning, data science, deep learning, statistics, inference,

etc.

For some idea of the range of applications, consider the following taken from [15]:

1. Diagnosis of patients from various clinical measurements.

2. Prediction of the price of an asset in the future from economic data.

3. Character recognition from handwriting samples.

One can immediately recognize that 1 and 3 are discrete in character, since a

diagnosis is either healthy or not, and characters of natural language come from a

finite alphabet. On the other hand, 2 is continuous in character, since although mon-

etary instruments have a granularity determined by the lowest denomination, such

granularity is conveniently viewed as a infrequent quantization, with all intermediate

computations occurring with infinite precision. This is analogous to the distinction

between real numbers and their quantized counterparts on computers. The first cat-

egory are termed classification problems and the second regression problems.

It should be emphasized that structural assumptions of some kind are essential to

formulate well defined problems here. Moreover, assumptions on structure are what
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makes learning “interesting”, since without such assumptions the problems are either

statistically or computationally hard or infeasible. We give some trivial examples of

this, to clarify (heuristically) what we mean by the notions of statistical and compu-

tational hardness and infeasibility. In these examples and subsequent development,

𝑑 will denote the dimensionality of the data, 𝑛 the number of samples, and 𝑋̂ will

denote an estimator of 𝑋.

Example 1. (One-time pad, statistical infeasibility) Consider the class of functions

𝑓𝑘 : {0, 1}𝑑 → {0, 1}𝑑, 𝑓𝑘(𝑥𝑑
1) = 𝑥𝑑

1 ⊕ 𝑘𝑑
1 , 𝑘𝑑

1 ∼ U({0, 1}𝑑),

where ⊕ denotes bit-wise XOR, U refers to a uniform distribution. Suppose the user

sends a message 𝑚 ∼ U({0, 1}𝑑), the adversary observes a ciphertext 𝑦 = 𝑓(𝑚),

and forms a guess 𝑚̂ of the sent message. Then, P[𝑚̂ = 𝑚] = 2−𝑑, no matter what

guessing rule the adversary employs.

Example 2. (Black swan, statistical infeasibility) Consider a function 𝑓 : {0, 1}𝑑 →

{0, 1}, drawn uniformly from the space of all Boolean functions on 𝑑-dimensional

Boolean vectors. Suppose one observes samples (𝑥𝑖, 𝑓(𝑥𝑖)), 1 ≤ 𝑖 ≤ 𝑛, where the 𝑥𝑖

are drawn uniformly over all the 2𝑑 − 1 non-zero Boolean vectors. The task is to

estimate 𝑓0 = 𝑓 (⃗0); call the estimate 𝑓0. Then regardless of the value of 𝑛 and choice

of 𝑓0, P[𝑓0 = 𝑓0] = 0.5. Note that as long as the learner is still confined to the non-

zero vectors and 𝑓 is still drawn uniformly, the same conclusion applies even if the

learner used a non-uniform distribution over the samples or picked samples. This is

a mathematical example of what philosophers call the “black swan problem”, otherwise

known as “the problem of induction” [24].

Example 3. (coupon collector over the hypercube, statistical and computational

hardness) We use the same setup as in the previous example, except here 𝑥𝑖 are

drawn from all the 2𝑑 possible 𝑑-dimensional Boolean vectors. Here we add a slight

adversarial element: the adversary gets to pick the point 𝑥 at which 𝑓(𝑥) needs to

be estimated and does not reveal this choice to the learner. Alternatively, one could
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consider setups where the cost measure is
∑︀

𝑥∈{0,1}𝑑 |𝑓(𝑥) − 𝑓(𝑥)| and no adversarial

element. The core conclusions do not really change; the adversarial element is for

ease of exposition. Then, in the case where the learner can freely pick samples, we

have:

P[𝑓𝑥 ̸= 𝑓𝑥] =

⎧⎪⎨⎪⎩0.5 if 𝑛 < 2𝑑,

0 if 𝑛 ≥ 2𝑑.

In the case where the learner draws 𝑥𝑖 ∼ U({0, 1}𝑑) i.i.d, we may use the results of

the classical coupon collector’s problem (see e.g. [21, Prop. 2.4]). As such, we get:

P[𝑓𝑥 ̸= 𝑓𝑥] =
1

2
if 𝑛 < 2𝑑

and

P[𝑓𝑥 ̸= 𝑓𝑥] ≤ 𝑒−𝑐

2
if 𝑛 > (𝑑 ln(2) + 𝑐)2𝑑.

Thus in both setups, an exponential (in 𝑑) samples are required for learning accurately.

1.1 Common Structural Assumptions

As seen in the above examples, learning problems in their full generality are hard,

and there is thus a need for structural assumptions. We give a brief review of some

fruitful structural assumptions here.

1.1.1 Linear Regression

Perhaps the oldest and best understood structure is that of linear regression. For a

fascinating historical development of this method and its role in statistics, we refer

the reader to [29]. The idea is to restrict the class of predictors to linear (or more

precisely affine) models, i.e., given input vectors 𝑋𝑇 = (𝑋1, 𝑋2, . . . , 𝑋𝑑), the goal is

to predict the output 𝑌 via 𝑌 = 𝛽0 +
∑︀𝑑

𝑖=1𝑋𝑖𝛽𝑖. Note that one can prepend a 1 to 𝑋

to form 𝑋 ′ = (1, 𝑋1, 𝑋2, . . . , 𝑋𝑑), thus allowing one to restrict study to linear models

𝑌 = 𝑋 ′𝑇𝛽.
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One of their great advantages is that they are simple to describe and hence score

well in terms of “interpretability”. They have simple convex optimization problems

associated with them for obtaining 𝛽 from the training data, the most basic approach

being least squares. Furthermore, in certain sparse or data limited regimes, they can

often do better than fancier methods.

One of the main drawbacks is that the standard setup is ill-suited to nonlinearities.

Nevertheless, this can often be overcome by appropriate basis expansions, yielding

predictors of the form 𝑌 =
∑︀𝑑′

𝑖=1 ℎ𝑖(𝑋)𝛽𝑖 where 𝑑′ is not necessarily the same as 𝑑, and

ℎ𝑖 is a suitable basis. Common bases include coordinate projections (the standard

linear setup), multivariate polynomials of various degrees, indicators, and splines.

Basically, the idea is that although 𝑌 is not linear in the original data 𝑋, there is

some transformed input space (represented by (ℎ1(𝑋), ℎ2(𝑋), . . . , ℎ𝑑′(𝑋))) where 𝑌

is linear.

1.1.2 ANOVA Decomposition

Analysis of variance (ANOVA) decomposition is a popular method for imposing struc-

ture on regression functions. According to [29], there were precursors to this method

explored hundreds of years earlier by Laplace, but the initial modern development

is primarily due to Fisher, who included it in his classic book [11]. An ANOVA

decomposition has the form:

𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑑) = 𝑔0 +
∑︁
𝑖

𝑔𝑖(𝑋𝑖) +
∑︁
𝑖<𝑗

𝑔𝑖𝑗(𝑋𝑖, 𝑋𝑗) + . . . 𝑔12...𝑑(𝑋1, 𝑋2, . . . , 𝑋𝑑).

(1.1)

In (1.1), a variety of structural constraints can be imposed, making it quite attractive.

For example, one may choose to eliminate high-order terms as one may not have

enough data to justify their inclusion, invoking arguments like Occam’s razor, or

arguments involving the difficulty of estimating such influences, making any inference

of them suspicious at best. This could also be justified in terms of local approximation

ideas, since keeping the low degree terms is analogous to using only the first few terms
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from a Taylor expansion. Furthermore, this is a very popular idea for exploratory data

analysis, a simple illustration of which is estimating dependencies on single variables

first (the “main effect” or “first-order effect”), then pairs on the residual formed by

subtracting off the single variable terms, and so on. One could also envision a scheme

of successive refinement, and one popular approach is the backfitting algorithm for

additive models, introduced in [6].

Another area where structure can be imposed is for the choice of basis in basis

expansions of the 𝑔𝑖, 𝑔𝑖𝑗, . . . used for the reduction of the problem of learning the

model to a linear regression. Lastly, one can impose sparsity constraints on the 𝑔

functions, by setting a bunch of them to 0. The topic of sparsity in regression is

reviewed next.

1.1.3 Sparse Regression

Sparse regression has a rich history, and has appeared in the literature under a variety

of terms: compressive sensing, compressed sensing, compressive sampling, and sparse

sampling. The literature on this topic is too vast to properly review here. Among

many possible sources, we refer the reader to [16] for the usage of these methods in

statistics. Nevertheless, we provide an outline of what to expect. The basic idea is

that knowledge of the sparsity of a signal can be used to recover it from far fewer mea-

surements than in the unconstrained case. This allows one to solve inverse problems

such as recovering x from y = Ax in classically underdetermined situations. This

principle is widely applicable and is observed in both noiseless and noisy settings.

Indeed, the results in this topic are powerful enough to drive changes in the design of

the feature space for x, or the measurement matrix A in order to enable the harness-

ing of these techniques effectively. Thus, it is interesting to study its incorporation

into the ANOVA and basis expansion framework as an additional level of structure.

We explore this in the GF(2) case in Chapter 2.
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1.1.4 Probabilistic Graphical Models

A probabilistic graphical model or simply a graphical model is a probabilistic model

where a graph is used to encode the conditional dependence structure between ran-

dom variables. They are commonly classified into directed graphical models and

undirected graphical models, with numerous specialized forms such as factor graphs

being occasionally useful. Generally, an increase in the number of edges increases the

dependencies in the model, with the most extreme case in the undirected scenario

being the fully connected graph. The size of the maximal embedded clique in the

graph gives the maximal degree of interaction between the variables. Observed in

the log-likelihood domain, the problem of learning a graphical model is an ANOVA

decomposition problem with non-negativity and normalization constraints.

1.1.5 Other Structures

There are many other kinds of structures useful for the purposes of learning, such as

low-rank assumptions for the task of matrix completion and the emerging topic of

sum-product networks [28] as an alternative to standard deep neural network archi-

tectures. As the ideas from these kinds of structures have not played a significant role

in the problem formulations of this thesis, we do not discuss these interesting topics

in greater detail.

1.2 Outline of the Thesis

In general, the primary goal of this thesis is to learn an ANOVA decomposition of

the form (1.1). There are a couple of aspects here that to the best of our knowledge

have not been explored:

1. We develop theory for classification in a completely Boolean setting, where all

additions in (1.1) are over GF(2). This is motivated by the problem of classi-

fication of categorical data, where the data is drawn from a discrete alphabet

and the output is a binary label (in the case of binary classification). There is
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some prior work on using ANOVA decompositions in the context of representing

Boolean functions [26, Sec. 6.2,8.3]. Indeed, the decomposition described in [26,

Sec. 6.2] is the one we focus on in this thesis. However, the primary focus in [26]

is on real-valued Boolean functions, for which an alternative decomposition is

of greater utility.

2. We discuss the setting of learning with chosen examples and learning with feed-

back, also known as adaptive learning. Learning with chosen examples as op-

posed to drawing examples uniformly over the space is not unrealistic in appli-

cations where there is significant understanding of the feature space. Moreover,

it tends to simplify the exposition without changing the essential conclusions,

something we illustrated in Example 3. Perhaps more importantly, this allows

exploration of the topic of “adaptive learning”. Learning with feedback is a topic

that is not as well explored as the classical “one-shot” statistical setting. Al-

though there is a danger of creating unreasonable beliefs through reinforcement

via feedback, there is no inherent reason to avoid exploring this broadening of

the problem setup. Indeed, in [26], this is often the default assumption in the

“query access model”.

Note that the problem of adaptive learning as described above is different from a

classical online learning setup. A critical difference is that in adaptive learning,

the learner is free to pick samples based on the history, while in online learning,

the samples are not in control of the learner. Indeed, in this sense the problem

is closer to that of reinforcement learning, where the learner is called an “agent”

and is free to choose its actions based on the history of rewards and states.

Nevertheless, in the adaptive learning setup described above, there is no notion

of intermediate rewards associated for every action, where in this case action

refers to a sample choice. Instead, the “reward” is measured by some sort of loss

function and is computed once all samples have been picked or drawn.

3. We demonstrate how the optimal risk varies depending on the degree of the

ANOVA decomposition from constant to exponential in 𝑑 for the problem over
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GF(2). In the case of the problem over R, [19] provides some upper bounds

on the excess risk as compared to the optimal value (under 𝑙2 achieved by the

conditional expectation) under certain assumptions. We provide a simple up-

per bound analysis here when the query points can be chosen by the learner.

The advantage of our analysis is that it applies to a less restrictive set of as-

sumptions than that of [19], at the cost of needing query access. This gives a

“learning hierarchy” of complexity that ranges from constant to exponential in

𝑑, as expressed in the title of this thesis.

We discuss the above topics related to the ANOVA decomposition and its learning

in Chapter 2 of this thesis. In addition, in Chapter 3, we demonstrate how quantizers

can be used for regression. This demonstration is done by using lattice quantizers.

Finally, in Chapter 4, we present some ideas for future work.
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Chapter 2

Learning of ANOVA Decompositions

2.1 Introduction

In this chapter, we focus primarily on the problem of learning a function 𝑓 : {0, 1}𝑑 →

{0, 1}. We also briefly examine the problem of learning a function 𝑓 : [0, 1]𝑑 → R.

As already noted in Example 3, in the absence of structure this requires exponential

(in 𝑑) samples in the GF(2) setting. In the real case, the same applies, see e.g. [14,

Thm. 3.2]. We first consider the Boolean case by examining the structure imposed

by (1.1) adapted to a GF(2) setting:

𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑑) = 𝑔0 ⊕
∑︁
𝑖

𝑔𝑖(𝑋𝑖) ⊕
∑︁
𝑖<𝑗

𝑔𝑖𝑗(𝑋𝑖, 𝑋𝑗) ⊕ . . . 𝑔12...𝑑(𝑋1, 𝑋2, . . . , 𝑋𝑑),

(2.1)

where ⊕ is used instead of + to highlight the fact that the addition occurs over

GF(2), and not R. The idea is that all non-linearities of 𝑓 are captured within the 𝑔𝑖.

It is not immediately clear what, if any, connection there is to the classical Fourier

expansion of Boolean functions described in [26, 1.2]. To shed light on this, we have

the following proposition (also given as [26, Prop. 6.18]).

Proposition 1. 𝑓𝑆 = 𝐴𝑁𝐷𝑆 =
∏︀

𝑖∈𝑆 𝑥𝑖 ranging over 𝑆 ⊆ {1, 2, . . . , 𝑑} serves as a

basis for the vector space of 𝑓 : {0, 1}𝑑 → {0, 1}. Note that the “empty” 𝐴𝑁𝐷𝜑 is

defined as the identically 1 function. In other words, there is a unique collection 𝒮
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(possibly empty) of distinct sets 𝑆𝑖 ⊆ {1, 2, . . . , 𝑑}, 1 ≤ 𝑖 ≤ 𝑙, such that

𝑓 ≡
𝑙∑︁

𝑖=1

𝐴𝑁𝐷𝑆𝑖
. (2.2)

Proof. The number of 𝑓 : {0, 1}𝑑 → {0, 1} is 22𝑑 , and the number of collections

𝒮 = {𝑆1, . . . , 𝑆𝑙} is equal to the cardinality of the power set of the set of all subsets

of {1, 2, . . . , 𝑑}, namely 22𝑑 as well. It thus suffices to show that the mapping from

collections of subsets to Boolean functions is injective. Suppose not, and let 𝑓 =∑︀
𝑖 𝑔𝑖 =

∑︀
𝑗 ℎ𝑗 be two distinct representations as a sum of 𝐴𝑁𝐷𝑆 over a collection of

subsets 𝑆. Adding, we get 0 =
∑︀

𝑖 𝑔𝑖 +
∑︀

𝑗 ℎ𝑗, yielding a non-trivial representation of

the identically zero function (call it 𝑓0) of the form:

𝑓0 ≡
∑︁
𝑆𝑖∈𝒮

𝐴𝑁𝐷𝑆𝑖
. (2.3)

For this, the idea is to simply look at the Boolean vectors in increasing order of

Hamming weight. More precisely, consider first 0 = 𝑓0(0, . . . , 0). (2.3) immediately

gives 𝜑 /∈ 𝒮. Considering 0 = 𝑓0(1, . . . , 0) = 𝑓0(0, 1, . . . , 0) = · · · = 𝑓0(0, 0, . . . , 1)

successively in turn, we see that {𝑥} /∈ 𝒮 for any singleton set {𝑥}. Repeating the

above over all Boolean vectors of Hamming weight 2, we see that 𝑆 /∈ 𝒮 for any 𝑆 with

|𝑆| = 2. This may clearly be repeated in turn over vectors of Hamming weight 3, 4,

and so on up to 𝑑, yielding 𝒮 = 𝜑. This gives the desired contradiction, implying that

the mapping between collections of subsets to Boolean functions is injective. This

demonstrates that 𝐴𝑁𝐷𝑆 forms a basis for the vector space of Boolean functions.

Proposition 1 gives an idea as to what the ANOVA decomposition (2.1) looks like.

For instance,

𝑔123(𝑋1, 𝑋2, 𝑋3) = 𝛽0+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋1𝑋2+𝛽5𝑋2𝑋3+𝛽6𝑋1𝑋3+𝛽7𝑋1𝑋2𝑋3.

Furthermore, it shows that there is a close relation between the expansion described

here and the one proposed in [26, Thm. 1.1]. The difference between the two lies
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chiefly in the fact that the addition in [26, Thm. 1.1] is over the reals, with real

coefficients as opposed to addition over GF(2) here. The approach using GF(2)

exclusively is briefly examined in [26, Sec. 6.2]. The main advantage of [26, Thm. 1.1]

is that it gives the flexibility to consider real-valued Boolean functions, i.e. 𝑓 :

{0, 1}𝑑 → R in addition to 𝑓 : {0, 1}𝑑 → {0, 1}. However, this is achieved at the cost of

embedding {0, 1} in R regardless of the setting. Indeed, it turns out to be convenient

in such a setup to consider 𝑓 : {−1, 1}𝑑 → {−1, 1} via the identification 0 ↔ −1, 1 ↔

1. We follow this identification here as well in our illustrative comparisons between

the two representations.

Two kinds of structure that help with learning Boolean functions efficiently are

low degree expansions and sparse expansions. We define these formally below, for the

expansion (2.2).

Definition 1. The degree is max(|𝑆1|, |𝑆2|, . . . , |𝑆𝑙|). We also denote this by deg(𝑓) =

max(|𝑆1|, . . . , |𝑆𝑙|). Sometimes, we also use the term order as a synonym for degree.

Definition 2. The sparsity level is 𝑙. We also refer to this by saying that the

function 𝑓 is 𝑙-sparse, or sparsity(𝑓) = 𝑙.

We now examine some common Boolean functions and their expansions, with

particular emphasis on the degree and sparsity level. We also compare this with their

counterparts based on the classical Fourier expansion [26, Thm. 1.1]. We remark that

in the classical Fourier expansion, there is a lot more freedom regarding the notion of

sparsity, as one can define the notion of “approximately sparse” with real coefficients

for the basis expansion in a number of ways. For simplicity, in the examples below,

we will list the level of sparsity as the “exact sparsity level”, namely the number

of non-zero coefficients. In many cases, judging the “approximate” sparsity level of

the function may be easily done once the Fourier expansion coefficients have been

explicitly computed.

Before proceeding further, we make a simple observation regarding the degree

with respect to (2.2). This is also given as [26, Cor. 6.22], left as an exercise there.
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Proposition 2. Consider a function 𝑓 : {0, 1}𝑑 → {0, 1}, where ranging over all

possible inputs, the number of output 1’s is odd. In other words,
∑︀

𝑥∈{0,1}𝑑 𝑓(𝑥) = 1.

Then the degree of 𝑓 with respect to (2.2) is 𝑑. The converse also holds.

Proof. The proof is immediate from the observation that

∑︁
𝑥∈{0,1}𝑑

𝐴𝑁𝐷𝑆(𝑥1, 𝑥2, . . . , 𝑥𝑑) = 1𝑆={1,2,...,𝑑}.

This is because there are 2𝑑−|𝑆| ≡ 1𝑆={1,2,...,𝑑} (mod 2) Boolean vectors 𝑥 for which

𝐴𝑁𝐷𝑆(𝑥) = 1.

This offers a quick necessary and sufficient condition for checking whether the

degree is the maximum possible, namely 𝑑.

2.1.1 AND Function

One of the simplest Boolean functions is 𝐴𝑁𝐷{1,2,...,𝑑}. With (2.2), the expansion of

𝐴𝑁𝐷{1,2,...,𝑑} it is simply the function itself, yielding a degree of 𝑑 and a sparsity level

of 1. With the Fourier expansion, it is 2
(︁∏︀𝑑

𝑖=1
1+𝑥𝑖

2

)︁
− 1, yielding a degree of 𝑑 and

a sparsity level of 2𝑑.

2.1.2 Indicator Functions

A slight generalization of 𝐴𝑁𝐷{1,2,...,𝑑} are indicator functions. With (2.2), the expan-

sion of 1𝑎(𝑥1, 𝑥2, . . . , 𝑥𝑑) where 𝑎 ∈ {0, 1}𝑑 is
∏︀𝑑

𝑖=1(1 + 𝑎𝑖 + 𝑥𝑖). This yields a degree

of 𝑑 and a sparsity level of 2𝑑−𝐻𝑊 (𝑎), where 𝐻𝑊 (𝑎) denotes the Hamming weight of

𝑎. With the Fourier expansion, it is 2
(︁∏︀𝑑

𝑖=1
1+𝑎𝑖𝑥𝑖

2

)︁
− 1, yielding a degree of 𝑑 and a

sparsity level of 2𝑑. We shall use the sparsity level expression later in Theorem 5.

2.1.3 OR Function

With (2.2), the expansion of 𝑂𝑅{1,2,...,𝑑} is 1 +
∏︀𝑑

𝑖=1(1 + 𝑥𝑖), yielding a degree of 𝑑

and a sparsity level of 2𝑑 − 1. With the Fourier expansion, it is 1 − 2
(︁∏︀𝑑

𝑖=1
1−𝑥𝑖

2

)︁
,
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yielding a degree of 𝑑 and sparsity level of 2𝑑.

2.1.4 Complement of a Function

The above expansions bear a lot of similarity to each other, and this is no accident.

Basically, the complement of 𝑓 is 1⊕𝑓 with respect to (2.2). In the Fourier expansion,

it is −𝑓 . From this, we see that the degree and sparsity level of the complement of a

function are identical to that of the original function up to a possible ±1 correction,

regardless of the expansion type.

2.1.5 XOR Function

With (2.2), the expansion of 𝑋𝑂𝑅(𝑥1, 𝑥2, . . . , 𝑥𝑑) is
∑︀𝑑

𝑖=1 𝑥𝑖, yielding a degree of 1

and a sparsity level of 𝑑. With the Fourier expansion, it is (−1)𝑑+1
∏︀𝑑

𝑖=1 𝑥𝑖, yielding

a degree of 𝑑 and a sparsity level of 1.

2.1.6 Majority Function

For simplicity, we examine the case of 𝑑 odd, as this allows an unambiguous defi-

nition of the majority function. For 𝑑 > 1 odd, we define 𝑀𝑎𝑗𝑑(𝑥1, 𝑥2, . . . , 𝑥𝑑) =

1(𝐻𝑊 (𝑥) ≥ 𝑑+1
2

). With the Fourier expansion, a closed form expression for the

Fourier expansion weights is given in [26, Thm. 5.19], and asymptotics in [26, 5.11].

The degree is 𝑑, and sparsity is 2𝑑−1. For (2.2), the expansion is trickier, with the

non-zero coefficient pattern depending on the greatest power of 2 dividing 𝑑− 1. We

give the exact expansion only for 𝑑 = 2𝑟 + 1, as this turns out to elicit the worst case

in terms of sparsity. More precisely, we have the following proposition.

Proposition 3. For 𝑑 = 2𝑟 + 1, 𝑀𝑎𝑗𝑑 =
∑︀

𝑆: 𝑑+1
2

≤|𝑆|<𝑑𝐴𝑁𝐷𝑆. Furthermore, for any

odd 𝑑 > 1, sparsity(𝑀𝑎𝑗𝑑) ≤ 2𝑑−1 − 1, with equality precisely when 𝑑 = 2𝑟 + 1 for

some 𝑟 ≥ 1. In general, deg(𝑀𝑎𝑗𝑑) ≤ 𝑑−1, and equality occurs for 𝑑 = 2𝑟 +1, among

other cases.

For this, we first prove the following lemma that generalizes Proposition 2. This

is stated as [26, Prop. 6.21] and left as an exercise.
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Lemma 1. Consider (2.2). 𝑆𝑖 occurs in this expansion precisely when
∑︀

𝑥:supp(𝑥)⊆𝑆𝑖
𝑓(𝑥) =

1.

Proof. Consider
∑︀

𝑥:supp(𝑥)⊆𝑆𝑖
𝑓(𝑥). The coefficient of 𝐴𝑁𝐷𝑆 in this sum is |{𝑥 : 𝑆 ⊆

supp(𝑥) ⊆ 𝑆𝑖}|. Thus if 𝑆 * 𝑆𝑖, the coefficient is 0. Furthermore, if 𝑆 ( 𝑆𝑖, the

coefficient is 2|𝑆∖𝑆𝑖| ≡ 0 (mod 2). Lastly, if 𝑆 = 𝑆𝑖, the coefficient is 1. This gives the

desired result.

Proof of Proposition 3. By Lemma 1, and the fact that 𝑀𝑎𝑗𝑑 is permutation symmet-

ric for all odd 𝑑, the occurrence of 𝐴𝑁𝐷𝑆 depends solely on |𝑆| and not its elements.

Consider 𝑆 with |𝑆| = 𝑘 ≥ 𝑑+1
2

. Then 𝐴𝑁𝐷𝑆 occurs precisely when
∑︀𝑘

𝑖= 𝑑+1
2

(︀
𝑘
𝑖

)︀
≡ 1

(mod 2). But we have:

𝑘∑︁
𝑖= 𝑑+1

2

(︂
𝑘

𝑖

)︂
≡

𝑘∑︁
𝑖= 𝑑+1

2

(︂
𝑘 − 1

𝑖

)︂
+

(︂
𝑘 − 1

𝑖− 1

)︂
(mod 2)

≡
(︂
𝑘 − 1
𝑑−1
2

)︂
+

(︂
𝑘 − 1

𝑘

)︂
(mod 2)

≡
(︂
𝑘 − 1
𝑑−1
2

)︂
(mod 2). (2.4)

For analyzing congruence relations of binomial coefficients modulo a prime, the fol-

lowing theorem due to Édouard Lucas [22, Eqn. 137] is useful:

Theorem 1 (Lucas’ Theorem). For non-negative integers 𝑚,𝑛 and a prime 𝑝, we

have the congruence relation:

(︂
𝑚

𝑛

)︂
≡

𝑘∏︁
𝑖=0

(︂
𝑚𝑖

𝑛𝑖

)︂
(mod 𝑝),

where

𝑚 = (𝑚𝑘𝑚𝑘−1 . . .𝑚1𝑚0)𝑝 =
𝑘∑︁

𝑖=0

𝑚𝑖𝑝
𝑖,

and

𝑛 = (𝑛𝑘𝑛𝑘−1 . . . 𝑛1𝑛0)𝑝 =
𝑘∑︁

𝑖=0

𝑛𝑖𝑝
𝑖.
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Remark: For our purposes here this is sufficient. However, to analyze congruence

relations of binomial coefficients modulo an arbitrary residue, we may first reduce to

the case of prime powers by the Chinese remainder theorem (see e.g. [12, 4.6,4.7] for

a simple explanation of this idea). For prime powers, Kummer’s theorem provides a

partial answer [20]. A more general result in this direction is provided by [13, Thm.

1].

Returning to the proof, we see that it suffices to study (2.4). For convenience,

let 𝑠 = 𝑑−1
2

. Clearly, when 𝑘 = 𝑑 = 2𝑠 + 1,
(︀
𝑘−1
𝑠

)︀
=
(︀
2𝑠
𝑠

)︀
≡ 0 (mod 2) either via a

symmetry argument invoking
(︀

2𝑠
𝑠+𝑖

)︀
=
(︀

2𝑠
𝑠−𝑖

)︀
or by direct application of Theorem 1.

Thus, for |𝑆| = 𝑑, 𝐴𝑁𝐷𝑆 won’t occur in the expansion, giving the desired degree

bound. Furthermore for 𝑘 ≤ 𝑠, 𝐴𝑁𝐷𝑆 for |𝑆| = 𝑘 won’t occur. Thus, we see that

sparsity(𝑀𝑎𝑗𝑑) ≤
2𝑠∑︁

𝑖=𝑠+1

(︂
2𝑠 + 1

𝑖

)︂
= 2𝑑−1 − 1.

Furthermore, equality holds iff
(︀
𝑖
𝑠

)︀
≡ 1 (mod 2) ∀𝑠 ≤ 𝑖 < 2𝑠. By examining the

binary representation of 𝑠, it is clear by Theorem 1 that this happens iff 𝑠 = 2𝑟−1

for some 𝑟 ≥ 1. More precisely, let 2𝑚 ‖ 𝑠, where 𝑝𝑟 ‖ 𝑛 denotes 𝑝𝑟|𝑛, 𝑝𝑟+1 - 𝑛. In

other words, 𝑠 = 2𝑚 + 2𝑚+1𝑗. If 𝑠 ̸= 2𝑟−1 for some 𝑟, 𝑗 ̸= 0. Let 𝑖 = 2𝑚+2𝑗. Then

𝑖 − 𝑠 = 2𝑚+1𝑗 − 2𝑚 > 0, and 𝑖 < 2𝑠 = 2𝑚+1 + 2𝑚+2𝑗. Then
(︀
𝑖
𝑠

)︀
≡ 0 by Theorem 1,

because the (𝑚 + 1)st least significant bit (LSB) is 1 in 𝑠 and 0 in 𝑖. Conversely,

if 𝑠 = 2𝑟−1, any number 𝑠 ≤ 𝑖 < 2𝑠 has the 𝑟th LSB set to 1 yielding equality in

sparsity(𝑀𝑎𝑗𝑑) = 2𝑑−1 − 1. For such 𝑠,
(︀
2𝑠−1
𝑠

)︀
≡ 1 (mod 2), demonstrating that

deg(𝑀𝑎𝑗𝑑) = 𝑑− 1 in such cases.

2.1.7 Mod3 Function

Define Mod3(𝑥) = 1(𝐻𝑊 (𝑥) ≡ 0 (mod 3))1. [26, Ex. 6.21] gives the Fourier expan-

sion of this function. The degree is 𝑑 or 𝑑 − 1, and sparsity is 2𝑑−1. For (2.2), in

1Examination of the representation of this function was suggested by Govind Ramnarayan.
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similar fashion to the majority function by permutation symmetry, it suffices to focus

on the cardinality of subsets 𝑆; call |𝑆| = 𝑘. Then, 𝐴𝑁𝐷𝑆 occurs in the expansion

precisely when 𝐴𝑘 =
∑︀⌊ 𝑘

3
⌋

𝑖=0

(︀
𝑘
3𝑖

)︀
≡ 1 (mod 2) by Lemma 1. Evaluation of 𝐴𝑘 is well

known and is easily accomplished by a “roots of unity” trick:

𝐴𝑘 =
1

3

(︀
(1 + 1)𝑘 + (1 + 𝜔)𝑘 + (1 + 𝜔2)𝑘

)︀
=

2𝑘 + (−1)𝑘(𝜔𝑘 + 𝜔2𝑘)

3
, (2.5)

where 𝜔 = 𝑒
2𝜋𝑖
3 denotes a cube root of unity. Since 1 + 𝜔 + 𝜔2 = 0, we have by (2.5),

𝐴𝑘 ≡ 0 (mod 2) ⇐⇒ 𝑘 ≡ 0 (mod 3). Thus, the degree is 𝑑 or 𝑑− 1, and sparsity is
2𝑑+1

3
+ 𝑂(1).

2.2 Low Degree Exact Learning of Boolean Func-

tions

The above has given some idea as to what to expect in terms of sparsity and degree for

Boolean functions with respect to (2.2). We now develop exact learning algorithms

that make use of low degree assumptions and also derive fundamental limits on their

performance. Such understanding gives insight into the possibilities and limitations

of learning ANOVA decompositions, a main goal of this thesis. Before proceeding, a

few clarifications are in order for the problem setup:

1. We focus on the noiseless case, or in other words the problem of exact recovery.

2. We consider the problem when all input points have to be chosen before hand

(corresponding to the “one-shot” learning scenario), and one where the input

points can be chosen based on the points chosen before and the responses re-

ceived from a query oracle (corresponding to a “query access”, “adaptive learn-

ing”, or “learning with feedback” setup). The first problem allows one to bound

the performance of models where the input points are chosen randomly from a

distribution independent of the responses. The second problem allows one to
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observe the gains (if any) obtained by breaking down the independence assump-

tion.

2.2.1 One-shot Low Degree Exact Learning

Theorem 2. Let function 𝑓 be an element of the set ℱ𝑘 = {𝑓 : deg(𝑓) ≤ 𝑘}. The

learner picks {𝑥1, 𝑥2, . . . , 𝑥𝑛}, and sends these points to a query oracle which responds

with {(𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)), . . . , (𝑥𝑛, 𝑓(𝑥𝑛))}. The task of the learner is to identify

𝑓 via a guess 𝑓 ′, and is said to succeed if 𝑓 ′ ≡ 𝑓 . Then, in order to guarantee

success, 𝑛 ≥
∑︀𝑘

𝑖=0

(︀
𝑑
𝑖

)︀
. Equality may be obtained by choosing {𝑥1, 𝑥2, . . . , 𝑥𝑛} = {𝑥 :

𝐻𝑊 (𝑥) ≤ 𝑘}.

Sufficiency. We show that {𝑥1, 𝑥2, . . . , 𝑥𝑛} = {𝑥 : 𝐻𝑊 (𝑥) ≤ 𝑘} suffices for recon-

struction. Necessity follows from the necessity bound in the adaptive case, provided

in Theorem 3. Since deg(𝑓) ≤ 𝑘, by Lemma 1 it suffices to obtain
∑︀

𝑥:supp(𝑥)⊆𝑆 𝑓(𝑥)

for |𝑆| ≤ 𝑘. But if supp(𝑥) ⊆ 𝑆 and |𝑆| ≤ 𝑘, 𝐻𝑊 (𝑥) ≤ 𝑘 as well. Thus, obtaining

the values of 𝑓(𝑥) for {𝑥 : 𝐻𝑊 (𝑥) ≤ 𝑘} suffices for exact identification of 𝑓 .

We now examine the asymptotics of 𝐴(𝑑, 𝑘) =
∑︀𝑘

𝑖=0

(︀
𝑑
𝑖

)︀
to get an idea of the

statistical complexity of such a low degree reconstruction procedure. This is easy

to handle when 𝑘 = Ω̃(𝑑) via the exponential approximation
(︀
𝑑
𝑘

)︀ .
= 2ℎ( 𝑘

𝑑), where

ℎ(𝑥) denotes the binary entropy function ℎ(𝑥) = −𝑥 log2(𝑥) − (1 − 𝑥) log2(1 − 𝑥).

In particular, for such 𝑘, we get exponential complexity in 𝑑. This should not be

surprising, since any Boolean function over the first 𝑘 bits has degree less than or

equal to 𝑘. Learning such a function (regardless of adaptivity) should take 2𝑘 samples,

which is exponential in 𝑑. However, for smaller 𝑘 = 𝑜(𝑑), there is a need for better

bounds. We have the following:

Proposition 4.
(︀
𝑑
𝑘

)︀
≤
∑︀𝑘

𝑖=0

(︀
𝑑
𝑖

)︀
≤
(︀
𝑑
𝑘

)︀
𝑑−𝑘+1
𝑑−2𝑘+1

.

25



Proof. The lower bound is trivial. For the upper bound, consider:

𝑘∑︁
𝑖=0

(︂
𝑑

𝑖

)︂
=

(︂
𝑑

𝑘

)︂(︃
1 +

𝑘

𝑑− 𝑘 + 1
+

𝑘(𝑘 − 1)

(𝑑− 𝑘 + 1)(𝑑− 𝑘 + 2)
+ · · · +

𝑘!∏︀𝑘
𝑗=1 𝑑− 𝑘 + 𝑗

)︃

≤
(︂
𝑑

𝑘

)︂(︃
1 +

𝑘

𝑑− 𝑘 + 1
+

(︂
𝑘

𝑑− 𝑘 + 1

)︂2

+ . . .

)︃

=

(︂
𝑑

𝑘

)︂
𝑑− 𝑘 + 1

𝑑− 2𝑘 + 1
.

Note that for 𝑘 sufficiently small, this gives tighter bounds than Chernoff. For

a simple application of Proposition 4, we get 𝐴(𝑑, 𝑘) = Θ(𝑑𝑘) for constant 𝑘 and

𝑑 → ∞.

2.2.2 Adaptive Low Degree Exact Learning

Theorem 3. Let function 𝑓 be an element of the set ℱ𝑘 = {𝑓 : deg(𝑓) ≤ 𝑘}. The

learner picks 𝑥1, sends it to a query oracle which responds with 𝑓(𝑥1). It then picks

𝑥2 (which might depend on (𝑥1, 𝑓(𝑥1))), and gets a response 𝑓(𝑥2). The process is

repeated until 𝑛 points have been picked, namely (𝑥1, 𝑥2, . . . , 𝑥𝑛). Note that the choice

of 𝑥𝑖 can depend upon {(𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)), . . . , (𝑥𝑖−1, 𝑓(𝑥𝑖−1))}. The task of the

learner is to identify 𝑓 via a guess 𝑓 ′, and is said to succeed if 𝑓 ′ ≡ 𝑓 . Then, in

order to guarantee success, 𝑛 ≥
∑︀𝑘

𝑖=0

(︀
𝑑
𝑖

)︀
. Equality may be obtained by choosing

{𝑥1, 𝑥2, . . . , 𝑥𝑛} = {𝑥 : 𝐻𝑊 (𝑥) ≤ 𝑘}.

Proof. Sufficiency is obvious, since those samples sufficed in the one-shot setting by

Theorem 2. For necessity, we first observe that |ℱ𝑘| = 2𝐴(𝑑,𝑘). Next, we use the

decision tree idea used in the algorithms literature. This is used for instance in the

proof of a lower bound on sorting via comparisons. For an excellent exposition of

this idea, see e.g. [8, 8.1]. The leaves of the decision tree correspond to the elements

𝑓 ∈ ℱ𝑘. The nodes of the tree correspond to the points 𝑥𝑖. The choice of right versus

left child reflects the Boolean response 𝑓(𝑥𝑖). The number of samples 𝑛 corresponds to

the depth of the decision tree. Thus, we have 𝑛 ≥ log2 |ℱ𝑘| = 𝐴(𝑑, 𝑘) as desired.
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2.3 Sparse Exact Learning of Boolean Functions

Here, we develop exact learning algorithms that make use of sparsity assumptions

and obtain fundamental limits on their performance. First, we define sets 𝒢𝑙 = {𝑓 :

sparsity(𝑓) ≤ 𝑙}, and the goal is to make statements on the lines of Theorems 2 and 3.

2.3.1 One-shot Sparse Exact Learning

Note that the problem of one-shot sparse exact learning can be given a linear algebraic

interpretation in order to bring it to a form more reminiscent of the standard com-

pressed sensing setups. We define a 𝑛×2𝑑 matrix A whose 𝑖th row consists of the vector

[𝑥𝑖(1), 𝑥𝑖(2), 𝑥𝑖(3), . . . , 𝑥𝑖(𝑑), 𝑥𝑖(1)𝑥𝑖(2), 𝑥𝑖(1)𝑥𝑖(3), . . . , 𝑥𝑖(𝑑− 1)𝑥𝑖(𝑑), . . . ,
∏︀𝑑

𝑗=1 𝑥𝑖(𝑗)]
′

corresponding to a 𝑑-dimensional Boolean vector 𝑥𝑖, where 𝑥𝑖(𝑗) denotes the 𝑗th bit

of 𝑥𝑖. The outputs are collected in a vector b = [𝑓(𝑥1), 𝑓(𝑥2), . . . , 𝑓(𝑥𝑛)]′. Then,

solving the equation Az = b over GF(2) is equivalent to the problem of inferring the

function 𝑓 , by Proposition 1. In particular, the problem of sparse exact learning is

equivalent to exact sparse recovery of z.

At first glance, one may hope to leverage the work of [9] which obtains compressive

sensing methods and bounds for finite fields via a connection to error correcting codes,

a connection first noted in [10] and [7, p. 92]. However, in these works the A matrix

had design leeway, allowing one to use a good error correcting code in its design. Here,

there are considerable constraints on A that do not map into conventional constraints

on codes. Indeed, it turns out that these constraints are strong enough to rule out

efficient methods for one-shot sparse exact learning.

We follow the same strategy as with the low degree exact learning case, first

proving an achievability bound for the one-shot case, and then a converse bound for

the adaptive case. It is intriguing that these turn out to be essentially equivalent to

each other even in the sparsity case, as developed below.

Theorem 4. Let function 𝑓 be an element of the set 𝒢𝑙 = {𝑓 : sparsity(𝑓) ≤ 𝑙}. The

learner picks {𝑥1, 𝑥2, . . . , 𝑥𝑛}, and sends these points to a query oracle which responds

with {(𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)), . . . , (𝑥𝑛, 𝑓(𝑥𝑛))}. The task of the learner is to identify
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𝑓 via a guess 𝑓 ′, and is said to succeed if 𝑓 ′ ≡ 𝑓 . Then, for 𝑛 ≥
∑︀⌊log2(𝑙)⌋+1

𝑖=0

(︀
𝑑
𝑖

)︀
,

there is a reconstruction procedure that guarantees success. Equality may be obtained

by choosing {𝑥1, 𝑥2, . . . , 𝑥𝑛} = {𝑥 : 𝐻𝑊 (𝑥) ≥ 𝑑− 1 − ⌊log2(𝑙)⌋}.

First, we prove a useful lemma relating sparse recovery to null-space constraints.

Lemma 2. Consider the problem of exact sparse recovery over the class 𝒢𝑙, 𝑙 ≥ 1.

Then to guarantee successful recovery over the entire class, 𝐻𝑊 (z) ≥ 2𝑙 + 1 for all

{z ̸= 0 : Az = 0}. Conversely, if 𝐻𝑊 (z) ≥ 2𝑙 + 1 for all {z ̸= 0 : Az = 0}, we can

ensure successful recovery.

Proof. For the forward direction, suppose not, and let Az = 0 for z = [𝑗1⃗′, (𝑛− 𝑗)⃗0′]′

where 1 ≤ 𝑗 ≤ 2𝑙. The assumption of the support being the first 𝑗 entries may

be made without loss of generality by reordering the rows of A. Then, for x =

[𝑙1′, (𝑛− 𝑙)⃗0′]′, Ax = A(x+ z). Moreover, sparsity(x) = 𝑙, and sparsity(x+ z) ≤ 𝑙 as

well, contradicting the hypothesis of exact sparse recovery. For the reverse direction,

if 𝐻𝑊 (x) ≤ 𝑙 and 𝐻𝑊 (z) ≥ 2𝑙 + 1, we have 𝐻𝑊 (x + z) ≥ 2𝑙 + 1 − 𝑙 = 𝑙 + 1. Thus

there can be only one 𝑙-sparse x satisfying Ax = b in such a scenario, and it may

be recovered combinatorially by iterating over all {x : 𝐻𝑊 (x) ≤ 𝑙} and checking

whether Ax = b or not.

We now propose what we call a “high Hamming weight” reconstruction scheme.

This scheme uses all 𝒯𝑘 = {𝑥 : 𝐻𝑊 (𝑥) ≥ 𝑑 − 𝑘} for some 𝑘 ≥ 0. Obviously if

one chooses 𝑘 = 𝑑, then regardless of 𝑙, we can guarantee exact recovery. But this

uses an exponentially large (in 𝑑) number of samples. We now give a much tighter

dependence of 𝑘 on 𝑙.

We prove a lemma which reduces such a tightening to a combinatorial set cover

type of question.

Lemma 3. We say that 𝒯 covers 𝒮 precisely when 𝒮 ⊆ 𝒯 . Let 𝑘 be a number

such that for any collection of 𝑗 ≤ 2𝑙 subsets 𝒮1,𝒮2, . . . ,𝒮𝑗 ⊆ {1, 2, . . . , 𝑑}, there

is a 𝒯 ⊆ {1, 2, . . . , 𝑑} with |𝒯 | ≥ 𝑑 − 𝑘 such that 𝒯 covers an odd number of the

𝒮𝑖. For such a 𝑘 (which depends on 𝑑, 𝑙), via a high Hamming weight reconstruction

corresponding to this 𝑘, we can recover exactly any 𝑓 ∈ 𝒢𝑙.
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Proof. By Lemma 2, it suffices to show that for any z ∈ {z ̸= 0 : Az = 0}, 𝐻𝑊 (z) ≥

2𝑙+ 1. Here A corresponds to the high Hamming weight reconstruction that uses 𝒯𝑘.

Suppose not, and assume Az = 0, z ̸= 0 and 𝐻𝑊 (z) ≤ 2𝑙. Equivalently, there is a

𝑓 (corresponding to z) with sparsity(𝑓) ≤ 2𝑙 and 𝑓(𝑡) = 0 for all 𝑡 ∈ 𝒯𝑘. Let 𝒮𝑖 over

1 ≤ 𝑖 ≤ 𝐻𝑊 (z) be the elements in the expansion of 𝑓 via (2.2). Then by hypothesis

there is a 𝒯 with |𝒯 | ≥ 𝑑 − 𝑘 covering an odd number of the 𝒮𝑖. Let ai
′ be the row

of A corresponding to the indicator of 𝒯 . Thus by the hypothesis and (2.2), we have

𝑓(ai) = ai
′z = 1. This contradicts Az = 0.

The next lemma addresses the expression of 𝑘 in terms of 𝑑 and 𝑙, thereby ad-

dressing the combinatorial question raised in Lemma 3.

Lemma 4. For any collection 𝒮 of 𝑙 ≥ 1 distinct subsets 𝒮1,𝒮2, . . . ,𝒮𝑙 ⊆ {1, 2, . . . , 𝑑},

there is a 𝒯 ⊆ {1, 2, . . . , 𝑑} with |𝒯 | ≥ 𝑑−⌊log2(𝑙)⌋ such that 𝒯 covers an odd number

of the 𝒮𝑖. We call such a 𝒯 an odd covering set.

Proof. 2 We prove by induction on 𝑑. For 𝑑 = 1, the cases 𝑙 = 1 and 𝑙 = 2 are obvious.

Suppose 𝑑 > 1, and assume the result holds for 1, 2, . . . , 𝑑− 1. Suppose an element 𝑖

is contained in all of the 𝑙 subsets. Then we may appeal to the induction hypothesis,

getting an odd covering set 𝒯 ′ with |𝒯 ′| ≥ 𝑑 − 1 − ⌊log2(𝑙)⌋ on {1, 2, . . . , 𝑑} ∖ {𝑖}.

Adding {𝑖} to 𝒯 ′, we get the desired 𝒯 . Likewise, if there is an element 𝑖 not

contained in any of the 𝑙 subsets, we may follow the same procedure. Thus, without

loss of generality, we may assume each element of {1, 2, . . . , 𝑑} appears in at most

𝑙−1 of the 𝒮𝑖 and at least 1 of them. We may also assume without loss that 𝑙 is even,

since otherwise we may simply use 𝒯 = {1, 2, . . . , 𝑑}. We prove by contradiction, and

hence suppose that there is a collection 𝒮 = {𝒮1,𝒮2, . . . ,𝒮𝑙} with |𝒮| = 𝑙 such that

for all 𝒯 , |𝒯 | ≥ 𝑑− ⌊log2(𝑙)⌋, 𝒯 covers an even number of the 𝒮𝑖.

We now view the setting through the complement 𝒯 c as this turns out to simplify

the argument. Specifically, we first introduce the notion of “influencing”: a set 𝒯 is

2Proof due to Xuhong Zhang.
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said to influence a set 𝒮 iff 𝑆 ∩ 𝑇 ̸= 𝜑. Observe that:

𝒯 covers 𝒮 ⇔ 𝒯 c does not influence 𝒮. (2.6)

Using (2.6) and that 𝑙 is even, we see that:

∀𝒯 , |𝒯 | ≥ 𝑑− 𝑘, 𝒯 covers an even number of the 𝒮𝑖 ⇔

∀𝒯 c, |𝒯 c| ≤ 𝑘, 𝒯 c influences an even number of the 𝒮𝑖.
(2.7)

By the inclusion-exclusion principle, we have:

∀𝒯 , |𝒯 | ≤ 𝑗, 𝒯 influences an even number of the 𝒮𝑖 ⇒

∀𝒯 , |𝒯 | ≤ 𝑗, |{𝒮𝑖 ∈ 𝒮 : 𝒯 ⊆ 𝒮𝑖}| is even.
(2.8)

Indeed, consider {𝑥1, 𝑥2, . . . , 𝑥𝑗}. Define sets

𝒜𝑖 = {𝒮𝑗 ∈ 𝒮 : 𝑥𝑖 ∈ 𝒮𝑗}.

Then, since all 𝒯 with |𝒯 | ≤ 𝑗 influence an even number of the 𝒮𝑖, we have

|𝒜𝑖|, |𝒜𝑖 ∪ 𝒜𝑗|, . . . , |
𝑗⋃︁

𝑖=1

𝒜𝑖|

are all even. By inclusion exclusion, we get that

|𝒜𝑖|, |𝒜𝑖 ∩ 𝒜𝑗|, . . . , |
𝑗⋂︁

𝑖=1

𝒜𝑖|

are all even, yielding (2.8). In fact, the above argument yields more. Since the

universe where the 𝒜𝑖 live is 𝒮, and |𝒮| is even, the cardinality of any of the regions

formed by the Venn diagram of the 𝒜𝑖 for 1 ≤ 𝑖 ≤ 𝑗 3 is also even. In particular, we

3For the reader familiar with the term, formally this is the algebra generated by 𝒜𝑖.
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have:

∀𝒯 , |𝒯 | ≤ 𝑗, 𝒯 influences an even number of the 𝒮𝑖 ⇒

∀ partitions 𝒯 = 𝒜 ∪ ℬ,𝒜 ∩ ℬ = 𝜑, |{𝒮𝑖 ∈ 𝒮 : 𝒜 ⊆ 𝒮𝑖,ℬ ∩ 𝒮𝑖 = 𝜑}| is even.
(2.9)

Now consider a tree construction procedure as follows. We start with a root

node consisting of all 𝑙 elements of 𝒮. At each node containing more than one set

of the collection 𝒮, we can find an element 𝑖 such that at least one of the sets at

this node contains 𝑖, and at least one does not. This may be done since the 𝒮𝑖 are

distinct. We then split the node into two child nodes, the left child corresponding

to the sets containing 𝑖 and the right child corresponding to the sets lacking 𝑖. We

grow the tree in this fashion. The path to a node at depth 𝑗 corresponds to a

𝒯 = {𝑥1, 𝑥2, . . . , 𝑥𝑗} = 𝒜 ∪ ℬ. Here, 𝒜 corresponds to the left children and ℬ

corresponds to the right children. By (2.9) and our hypothesis, a node at depth

𝑗 ≤ ⌊log2(𝑙)⌋ has an even number of elements. Thus, the tree may be grown till a

depth of ⌊log2(𝑙)⌋, and nodes at that depth have at least 2 sets. Thus, we have:

2⌊log2(𝑙)⌋2 ≤ 𝑙

⇒ ⌊log2(𝑙)⌋ ≤ log2(𝑙) − 1,

a contradiction to ⌊𝑥⌋ > 𝑥− 1. This completes the proof of Lemma 4.

We may now prove Theorem 4.

Proof of Theorem 4. By Lemmas 3 and 4, we see that for 𝒢𝑙, we have a high Hamming

weight reconstruction for 𝑘 = ⌊log2(2𝑙)⌋ = ⌊log2(𝑙)⌋ + 1. This immediately gives the

result.

2.3.2 Adaptive Sparse Exact Learning

We first give a very simple lower bound on the number of samples required with quite

a large gap from the achievability Theorem 4. Essentially, we mimic the proof of

Theorem 3.
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Proposition 5. Let function 𝑓 be an element of the set 𝒢𝑙 = {𝑓 : sparsity(𝑓) ≤ 𝑙}.

The learner picks 𝑥1, sends it to a query oracle which responds with 𝑓(𝑥1). It then

picks 𝑥2 (which might depend on (𝑥1, 𝑓(𝑥1))), and gets a response 𝑓(𝑥2). The process

is repeated until 𝑛 points have been picked, namely (𝑥1, 𝑥2, . . . , 𝑥𝑛). Note that the

choice of 𝑥𝑖 can depend upon {(𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)), . . . , (𝑥𝑖−1, 𝑓(𝑥𝑖−1))}. The task

of the learner is to identify 𝑓 via a guess 𝑓 ′, and is said to succeed if 𝑓 ′ ≡ 𝑓 . Then,

in order to guarantee success, 𝑛 ≥ log2

(︁∑︀𝑙
𝑖=0

(︀
2𝑑

𝑖

)︀)︁
.

Proof. We know that |𝒢𝑙| =
∑︀𝑙

𝑖=0

(︀
2𝑑

𝑖

)︀
. As in Theorem 3, we construct a decision

tree. The leaves of the tree correspond to the elements 𝑓 ∈ 𝒢𝑙. The nodes of the tree

correspond to the points 𝑥𝑖. The choice of right versus left child reflects the Boolean

response 𝑓(𝑥𝑖). The number of samples 𝑛 corresponds to the depth of the decision

tree. Thus, 𝑛 ≥ log2 |𝒢𝑙| as desired.

To see the gap between the lower bound on 𝑛 of the above Proposition 5 and the

upper bound from Theorem 4, consider 𝑙 constant, and 𝑑 → ∞. Then, the lower

bound of Proposition 5 is Θ(𝑑𝑙) = Θ(𝑑) via Proposition 4, while the upper bound

from Theorem 4 is Θ(𝑑log2(𝑙)), a difference between linear and polynomial complexity.

It is thus desirable to improve upon the above crude bound. The intuition is

that the bound assumes “optimistic” equal (or constant ratio if one only cares about

asymptotics) splitting of 𝑗
2

: 𝑗
2

where 𝑗 denotes the number of functions corresponding

to a node in the decision tree. This may not be a realistic assumption, and in the

worst case of 1 : 𝑗−1 splitting, the number of nodes in a tree of depth 𝑘 changes from

exponential in 𝑘 to linear in 𝑘. The question now is how to elicit such a worst case

at every stage of the decision tree. The answer is provided in the following improved

lower bound, which essentially matches the upper bound of Theorem 4.

Theorem 5. We use the same adaptive learning setup as in Proposition 5. Then, in

order to guarantee success, 𝑛 ≥
∑︀⌊log2(𝑙)⌋

𝑖=0

(︀
𝑑
𝑖

)︀
.

Proof. Consider the class of functions ℱ = {1𝑥 : 𝐻𝑊 (𝑥) ≥ 𝑑 − ⌊log2(𝑙)⌋}. By

the discussion in 2.1.2, we know that for all 𝑓 ∈ ℱ , sparsity(𝑓) ≤ 2⌊log2(𝑙)⌋ ≤ 𝑙.

Furthermore, at any stage of the decision tree, querying any point 𝑥 can at best do a
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1 : 𝑗 − 1 split, where 𝑗 is the number of functions at the current node in the decision

tree. Thus, 𝑛 ≥ |ℱ| =
∑︀⌊log2(𝑙)⌋

𝑖=0

(︀
𝑑
𝑖

)︀
.

2.4 Low Degree Learning of Real Functions

The theorems developed in the previous sections give a useful summary of the prob-

lem of noiseless learning of Boolean functions with respect to the ANOVA decompo-

sition (2.2). We now turn to a similar question regarding the learning of functions

𝑓 : [0, 1]𝑑 → R. We note that this problem has been very recently independently pro-

posed and examined in [19]. The approach developed there is named SALSA (Shrunk

Additive Least Squares Approximation). The primary focus in [19] is on the case

where 𝑓 has a suitable kernel decomposition in a reproducing kernel Hilbert space

(RKHS). This allows the use of nice, computationally efficient, linear algebraic tech-

niques for the solution of the regression problem. Furthermore, [19] utilizes product

kernels 𝑘(𝑥, 𝑥′) =
∏︀𝑗

𝑖=1 𝑘𝑖(𝑥(𝑖), 𝑥′(𝑖)) and their symmetric counterparts over other 𝑗

element subsets of {1, 2, . . . , 𝑑}, corresponding to a 𝑗th degree ANOVA decomposition.

This reduces the task of computing the kernel matrix to that of evaluating symmet-

ric polynomials up to 𝑗th order among 𝑑 variables. This kernel structure allows the

employment of the Girard-Newton identities (see e.g. [23, Eqn. 2.11’]) to reduce a

naive 𝑂
(︁
𝑗
(︀
𝑑
𝑗

)︀)︁
to a 𝑂(𝑗2𝑑) complexity for evaluation of a single entry of the matrix.

However, there are numerous limitations of this work and thus opportunities for

further exploration, some of which have been noted by the authors themselves. In

this section, we partially address one such direction as described below. The main

theorems of [19] deal with the case where the true 𝑓 (𝑓(𝑥) = 𝐸[𝑌 |𝑋 = 𝑥] in the

standard 𝑙2 setup) is drawn from a class with finite norm with respect to the same

RKHS as used for the regression, among other more technical assumptions detailed in

their work. This may be unreasonable, and so the authors present another theorem

for dealing with violations to this assumption. Nevertheless, this theorem is unsat-

isfactory in that in general it can fall back to exponential complexity in 𝑑 from the

general hierarchy captured by
(︀
𝑑
𝑗

)︀
which they obtain in the more restrictive setting.

33



In spite of this, the practical performance of this method is very good, as substanti-

ated by a quite thorough examination of synthetic as well as real data from a variety

of sources. This may suggest that the
(︀
𝑑
𝑗

)︀
hierarchy holds even when the restrictive

“same-kernel” assumptions are lifted.

Here, we offer a glimpse of this possibility in a chosen query model. The idea is that

if the function 𝑓 has a low degree decomposition of degree 𝑘, one can reconstruct 𝑓 on

a scaled cubic lattice via querying points with number of nonzero components going

from 0 to 𝑘. Reproducing 𝑓 on the scaled cubic lattice is sufficient for reconstruction

of 𝑓 under most reasonable locality/smoothness assumptions due to the equivalence

of norms on finite dimensional vector spaces (here [0, 1]𝑑 ⊆ R𝑛). Normally, such a

procedure requires querying 𝑓 at an exponential number of points in order to cover

the lattice. However, here we can obtain the values at all points of the scaled cubic

lattice via a reconstruction procedure from the points containing a small (0 to 𝑘)

number of nonzero components. Thus, we effectively obtain a reduction from 2𝑑 to

𝐴(𝑑, 𝑘) =
∑︀𝑘

𝑖=0

(︀
𝑑
𝑖

)︀
in terms of statistical complexity.

We develop these ideas more rigorously below. First, we state and prove the core

reconstruction lemma.

Lemma 5. Let 𝑓 : [0, 1]𝑑 → R have a 𝑘th order decomposition:

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑑) =

(𝑑
𝑘)∑︁

𝑖=1

𝑓𝑖(𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘). (2.10)

Then, we have the following identity for such 𝑓 :

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑑) =
𝑘∑︁

𝑖=0

(−1)𝑖
(︂
𝑑− 𝑘 − 1 + 𝑖

𝑖

)︂∑︁
𝑠𝑦𝑚

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑘−𝑖, 0, 0, . . . , 0).

(2.11)

Here,
∑︀

𝑠𝑦𝑚 is a shorthand for symmetric summation, e.g. for 𝑑 = 4:

∑︁
𝑠𝑦𝑚

𝑓(𝑥1, 0, 0, 0) = 𝑓(𝑥1, 0, 0, 0) + 𝑓(0, 𝑥2, 0, 0) + 𝑓(0, 0, 𝑥3, 0) + 𝑓(0, 0, 0, 𝑥4),
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and

∑︁
𝑠𝑦𝑚

𝑓(𝑥1, 𝑥2, 0, 0) = 𝑓(𝑥1, 𝑥2, 0, 0) + 𝑓(𝑥1, 0, 𝑥3, 0) + 𝑓(𝑥1, 0, 0, 𝑥4)

+ 𝑓(0, 𝑥2, 𝑥3, 0) + 𝑓(0, 𝑥2, 0, 𝑥4) + 𝑓(0, 0, 𝑥3, 𝑥4).

Proof. By the symmetry of (2.11), it suffices to focus on the coefficient of 𝑓1 of (2.10)

on the left and right hand sides. The coefficient of 𝑓1(𝑥1, . . . , 𝑥𝑘) on both the left and

right hand sides of (2.11) is 1 since (−1)0
(︀
𝑑−𝑘−1

0

)︀
= 1. Out of all vectors 𝑥 passed into

𝑓1 with 𝑖 zeros for 𝑖 ≥ 1 and 𝑥𝑗’s populating the rest, again by symmetry it suffices to

examine the coefficient of 𝑓1(𝑥1, . . . , 𝑥𝑘−𝑖, 0, 0, . . . , 0) on the left and right hand side.

On the left hand side, it is clearly 0. On the right hand side, the number of terms

in the inner symmetric summation for the 𝑗th index is
(︀
𝑑−𝑘
𝑖−𝑗

)︀
. This is because the

first 𝑘 entries are fixed to (𝑥1, 𝑥2, . . . , 𝑥𝑘−𝑖, 0, 0, . . . , 0), and we need to pick out of the

remaining 𝑑−𝑘 positions 𝑖−𝑗 of them to populate with the respective 𝑥𝑙’s in order to

get a vector with 𝑘 − 𝑗 entries populated by 𝑥𝑙’s, the rest populated by zeros. Thus,

the coefficient on the right hand side is:

𝑖∑︁
𝑗=0

(−1)𝑗
(︂
𝑑− 𝑘 − 1 + 𝑗

𝑗

)︂(︂
𝑑− 𝑘

𝑖− 𝑗

)︂
=

𝑖∑︁
𝑗=0

(︂
𝑘 − 𝑑

𝑗

)︂(︂
𝑑− 𝑘

𝑖− 𝑗

)︂
(2.12)

=

(︂
0

𝑖

)︂
(2.13)

= 1(𝑖 = 0). (2.14)

Here we have used the extended definition of binomial coefficients:
(︀
𝑟
𝑘

)︀
=

∏︀𝑘−1
𝑖=0 𝑟−𝑖

𝑘!
,

valid for any 𝑟 ∈ R, 𝑘 ≥ 0 ∈ N. For a complete definition of binomial coefficients, see

e.g. [12, Eqn. 5.1]. (2.12) follows from a standard identity
(︀
𝑟
𝑘

)︀
= (−1)𝑘

(︀
𝑘−𝑟−1

𝑘

)︀
(see

e.g. [12, Eqn. 5.14]). (2.13) follows from the Vandermonde convolution
∑︀

𝑘

(︀
𝑟
𝑘

)︀(︀
𝑠

𝑛−𝑘

)︀
=(︀

𝑟+𝑠
𝑛

)︀
(see e.g. [12, Eqn. 5.27]). Note that this proof handles 𝑖 = 0, i.e. the coefficient

of 𝑓1(𝑥1, . . . , 𝑥𝑘) as well, which was treated as a special case at the beginning of the

proof. Nevertheless, we feel that there is value in presenting the special case sepa-

rately as it allows a good sanity check on the more complicated binomial coefficient
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summation (2.12).

We now prove a general lemma regarding the usage of a cubic lattice for learning

of 𝑓 : [0, 1]𝑑 → R under a query access model.

Lemma 6. Suppose 𝑓 : [0, 1]𝑑 → R belongs to the class of 1-Lipschitz functions with

respect to the 2-norm, with Lipschitz constant 𝑀 . In other words, |𝑓(𝑥) − 𝑓(𝑦)| ≤

𝑀 ||𝑥 − 𝑦||2 ∀𝑥, 𝑦 ∈ [0, 1]𝑑. Let ℱ denote the set of all such 1-Lipschitz functions

with Lipschitz constant 𝑀 . Suppose that a learner obtains the values of 𝑓(𝑥) over

all 𝑥 belonging to a “s-scaled” cubic lattice: {𝑥 : 𝑥 = 1
𝑠
(𝑥′

1, 𝑥
′
2, . . . , 𝑥

′
𝑑), 0 ≤ 𝑥′

𝑖 ≤ 𝑠},

and its goal is to estimate 𝑓 via an estimator 𝑓 . Then, 𝑓 may be chosen so that

||𝑓 − 𝑓 ||∞ ≤ 𝑀
√
𝑑

2𝑠
.

Proof. The proof simply follows by choosing 𝑓 to be a nearest neighbor decoder.

Maximum distance to the nearest neighbor (NN) in the lattice is
√
𝑑

2𝑠
. Thus, for any

𝑥 ∈ [0, 1]𝑑,

|𝑓(𝑥) − 𝑓(𝑥)| ≤ |𝑓(𝑥) − 𝑓(𝑁𝑁(𝑥))| + |𝑓(𝑥) − 𝑓(𝑁𝑁(𝑥))|

≤ 𝑀 |𝑥−𝑁𝑁(𝑥)| + 0

≤ 𝑀
√
𝑑

2𝑠
.

Combining Lemma 5 and Lemma 6, we easily get the following proposition:

Proposition 6. Suppose 𝑓 : [0, 1]𝑑 → R belongs to the class of 1-Lipschitz functions

with respect to the 2-norm, with Lipschitz constant 𝑀 . Suppose 𝑓 also has a 𝑘th order

decomposition 2.10. Suppose a learner picks {𝑥1, 𝑥2, . . . , 𝑥𝑛}, and sends these points

to a query oracle which responds with {(𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)), . . . , (𝑥𝑛, 𝑓(𝑥𝑛))}. Let

the learner’s estimate of 𝑓 be 𝑓 . Then, for 𝐴(𝑑, 𝑘, 𝑠) =
∑︀𝑘

𝑖=0

(︀
𝑑
𝑖

)︀
𝑠𝑖, 𝑛 ≥ 𝐴(𝑑, 𝑘, 𝑠),

the learner can respond with a 𝑓 satisfying:

||𝑓 − 𝑓 ||∞ ≤ 𝑀
√
𝑑

2𝑠
.
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Proof. The learner can simply pick the 𝑥𝑖 to be the points of the s-scaled cubic lattice

with number of non-zeros not exceeding 𝑘. Then, by Lemma 5, it can obtain the

values of 𝑓(𝑥) over all 𝑥 belonging to the s-scaled cubic lattice. Finally, by applying

Lemma 6, we get the desired result.

In order to understand the asymptotics of the number of samples 𝑛 versus the

tolerance level (upper bound on ||𝑓−𝑓 ||∞), it is helpful to obtain bounds on 𝐴(𝑑, 𝑘, 𝑠).

These may be easily obtained via the same argument used for Proposition 4, and are

given in the following proposition:

Proposition 7. 𝑠𝑘
(︀
𝑑
𝑘

)︀
≤
∑︀𝑘

𝑖=0

(︀
𝑑
𝑖

)︀
𝑠𝑖 ≤ 𝑠𝑘+1

(︀
𝑑
𝑘

)︀
(𝑑−𝑘+1)

𝑠(𝑑−𝑘+1)−𝑘
.

Proof. The lower bound is trivial. For the upper bound, consider:

𝑘∑︁
𝑖=0

(︂
𝑑

𝑖

)︂
𝑠𝑖 = 𝑠𝑘

(︂
𝑑

𝑘

)︂(︃
1 +

𝑘

𝑠(𝑑− 𝑘 + 1)
+

𝑘(𝑘 − 1)

𝑠2(𝑑− 𝑘 + 1)(𝑑− 𝑘 + 2)
+ · · · +

𝑘!

𝑠𝑘
∏︀𝑘

𝑗=1 𝑑− 𝑘 + 𝑗

)︃

≤ 𝑠𝑘
(︂
𝑑

𝑘

)︂(︃
1 +

𝑘

𝑠(𝑑− 𝑘 + 1)
+

(︂
𝑘

𝑠(𝑑− 𝑘 + 1)

)︂2

+ . . .

)︃

= 𝑠𝑘+1

(︂
𝑑

𝑘

)︂
(𝑑− 𝑘 + 1)

𝑠(𝑑− 𝑘 + 1) − 𝑘
.

2.5 Conclusions

1. We characterized the fundamental limits of exact learning in a noiseless Boolean

setting with respect to an ANOVA inspired decomposition. In order to precisely

define questions of interest, we focused on sparsity and low degree assumptions.

We also explored the question of gains via an adaptive model, where a learner

gets to pick samples based on the query-response history. At a high level,

the statistical complexity of learning a 𝑘 degree Boolean function over {0, 1}𝑑

is 𝑂(𝑑𝑘), while that of learning an 𝑙 sparse Boolean function over {0, 1}𝑑 is

𝑂(𝑑log2(𝑙)+1). At some level, this is a pleasing result since a degree 𝑘 function

is necessarily at most 𝑂(𝑑𝑘) sparse. Thus we have shown that enlarging to
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the set of sparse functions from the set of low degree functions does not incur

a greater than 𝑂(𝑑) multiplicative penalty factor. This is reminiscent of the

classical 𝑂(𝑘 log(𝑛
𝑘
)) type of results in classical compressed sensing, where the

multiplicative penalty factor is 𝑂(log(𝑛)) = 𝑂(log(2𝑑)) = 𝑂(𝑑) in our setup.

This reinforces the current wisdom of the literature that sparsity is a very useful

notion for good learning properties.

2. We also showed that, somewhat surprisingly, allowing adaptive learning does not

improve upon the statistical complexity, beyond a possible 𝑂(𝑑) multiplicative

factor in the sparse case. Note that the setup discussed here allows access to

the complete history. In the case of the popular topic of streaming algorithms,

first studied in [25] and popularized as well as formalized in [1], there is access

to only a fraction of the history due to storage constraints. In that sense, the

above represents the most optimistic scenario for adaptive learning.

Nevertheless, we still believe that the adaptive learning paradigm is a useful one,

and deserves further exploration. For instance, the results of this chapter do not

tackle the issues of computational complexity. In particular, it is possible that

allowing adaptive learning might allow greater computational efficiency. This

would be especially interesting, since a common use case of adaptive learning is

in real-time (hard or soft) applications. Consider for instance a robot wishing

to explore its environment. In many cases, it will be free to position and orient

its sensors in specific locations (a query access model), and can choose future

queries based on the past and its responses. However, it might also need to make

decisions in real-time, and thus developing fast algorithms for adaptive learning

in such settings could be useful. Our primary inspiration is from the benefits of

sequential hypothesis testing over the classical binary hypothesis testing setup,

compare for instance [27, Thm. 13.3] versus [27, Thm. 13.2]. Thus, we are also

interested in understanding other formulations for which statistical complexity

gains are possible, and translating such statistical gains into computational

gains.
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3. The results of this chapter primarily deal with the noiseless case. Indeed, the

Boolean case is particularly appealing for this purpose in that it allows one to

formulate clean, exact learning problems that can serve as a guideline on what

to expect in other spaces. We believe that by analogy with the results in the

literature for the real case, it should be possible to achieve robustness against

noise of various kinds with minimal loss of complexity.

4. We provided a glimpse into the possibilities of ANOVA learning in the real case,

under a query access model in a noiseless setting in Proposition 6. In particu-

lar, we obtain sub-exponential statistical complexity for the problem, compared

with exponential complexity in the unstructured case. We remark that un-

der the standard assumption of a uniform bound on the conditional variance

𝑉 𝑎𝑟[𝑌 |𝑋 = 𝑥] ≤ 𝜎2, one may simply repeat the queries and use Chebyshev’s

inequality to obtain sub-exponential statistical complexity for the problem of

estimating 𝐸[𝑌 |𝑋 = 𝑥]. We omitted this analysis as it is unlikely that this is an

order-optimal strategy for the estimation of 𝐸[𝑌 |𝑋 = 𝑥]. Furthermore, there

are other more serious limitations of Proposition 6, such as the assumption of

query access being provided. As such, we leave such developments that extend

the work of [19] and this section to future work.

5. On a more technical front, there is a gap (𝑂(𝑑) multiplicative) between the

converse Theorem 5 for the adaptive case and the achievability for the one-

shot setting in Theorem 4. However, when confined to the one-shot setting, the

achievability bound in Theorem 4 is in fact tight, with a matching converse. The

astute reader may notice that this may be shown by using the proof technique

of the adaptive learning converse, and making use of the 2𝑙 versus 𝑙 discrepancy.
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Chapter 3

Usage of Lattice Quantizers for

Regression

3.1 Introduction

In this chapter, we discuss an approach towards regression based on the ideas of

classification and regression trees (CART), first introduced in [5], as well as the ideas

of quantization.

The general setup is that one draws 𝑛 samples i.i.d from 𝑃𝑋 , say 𝑋1, . . . , 𝑋𝑛. One

observes noisy realizations of a function 𝑓 at these points, call these 𝑌1, 𝑌2, . . . , 𝑌𝑛.

The goal is to estimate 𝑓 by means of an estimator 𝑓 . In this chapter, we let 𝑋 live

in R𝑑, and 𝑌 live in R.

The idea of a classification and regression tree is to construct a cuboidal partition-

ing of R𝑑, or more commonly a bounded subset of R𝑑, typically taken as [0, 1]𝑑 in the

literature. The partitioning is constructed by recursively splitting along coordinate

axes, choosing the axis to split upon and the location of the split based on the training

data {(𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . , (𝑋𝑑, 𝑌𝑑)} according to some rule. This is then iterated

until a certain stopping condition is met. A typical stopping condition is when there

are too few points left in an element of the partition, so that if the partitioning were

to continue, some cells would become empty. For more information on typical split-

ting and stopping rules, we refer the reader to [15, Sec. 9.2]. Following this training
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procedure, a test data point 𝑥 is first mapped onto its containing cell, and then an ag-

gregation procedure based on the training data within that cell is employed to decide

the response 𝑓(𝑥). In the case of regression, a common aggregation rule is to simply

take the average of the training responses within the cell. In the case of classification,

a common rule is to take a majority vote on the training labels within the cell. The

“tree” term arises because the mapping of a point 𝑥 to a cell is accomplished via a

tree traversal, each decision being made by thresholding a coordinate.

There is a wide range of literature on this topic. Here, we mention that this

method can be extended to the training of multiple trees over different subsets of

the data, constructing what is referred to as a “random forest” [4]. Although quite

popular in practice [15, Chap. 15], there are still many open questions regarding

theoretical understanding of the method, such as those outlined in [3].

Part of the original motivation for the CART methodology was the notion of

“interpretability”. Although “interpretability” is a loose term, generally it refers to a

classification or regression procedure with simple, easy to understand, and easy to

modify rules. The coordinate splittings and tree structure are very helpful in this

respect. Nevertheless, upon extending to random forests, some of this is lost.

Here, we present an abstract generalization of the CART idea that focuses on the

key principle of defining a partition and using locality. We then specialize it and

study one such specialization based on lattices in greater detail.

Definition 3. Let ℳ,𝒩 be subsets of normed vector spaces. Consider drawing 𝑛

samples i.i.d from 𝑃𝑋 , say {𝑋1, 𝑋2, . . . , 𝑋𝑛} ⊆ ℳ. One then obtains from a query

oracle {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)}, where 𝑌𝑖 = 𝑓(𝑋𝑖) + 𝑍𝑖. Here, 𝑓 : ℳ → 𝒩 , and

𝑍𝑖 ∈ 𝒩 are i.i.d noise instantiations of 𝑍. The goal is to estimate 𝑓 by an estimator

𝑓 , so that |𝑓(𝑥) − 𝑓(𝑥)|𝒩 is as small as possible for all 𝑥 ∈ ℳ. Note that this by

itself does not specify an objective function, as there is ambiguity to how the different

𝑥 ∈ ℳ are treated relative to each other. Nevertheless, this serves as an overall goal

for the schemes detailed here.

Consider a estimator 𝑓 constructed as follows. It first partitions the “root” ℳ0 =

ℳ into the “first level” {ℳ00, . . . ,ℳ0𝑖}. The “second level” is constructed from the
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first by partitioning some of the ℳ0𝑖, forming sets labeled ℳ0𝑖𝑗. This procedure

is repeated a finite number of times until a stopping condition is met. Both the

partitioning and the stopping condition may depend on the training data.

On test data point 𝑥, the estimator 𝑓 outputs 𝑓(𝑥) = 𝐴({(𝑋𝑖, 𝑌𝑖) : (𝑋𝑖) ∈ ℳ𝑥}),

where ℳ𝑥 denotes the “neighborhood” of point 𝑥, i.e. it is the smallest set constructed

by the partitioning procedure containing 𝑥. Here, 𝐴 denotes an “aggregation proce-

dure”. If the neighborhood contains no training points, there are a variety of reasonable

estimates that can be formed. For simplicity, in our subsequent discussion we output

the average over all points 𝑓(𝑥) =
∑︀𝑛

𝑖=1 𝑌𝑖

𝑛
in such a case. Note that in more sophis-

ticated analysis, one can try climbing up the tree towards the root until at least one

point is found. However, this can result in very high variance if the first such node has

just a single point. The above simple rule keeps the variance low by averaging over all

the noise realizations, at the cost of greater bias. In fact, the proof of Lemma 7 shows

that this term does not dominate the expression in our setup and analysis, which in-

tuitively makes sense as it should be a low probability event compared to other sources

of error. We call such an estimator a locality based estimator.

We note that the family of locality based estimators is very large. In particular,

nearest neighbor methods, weighted neighborhood methods, CART, and linear clas-

sifiers are special cases of this family. The differences lie primarily in the partitioning

and stopping condition, though sometimes the aggregation procedure also varies. It

is intuitively clear that the performance of these methods crucially depends on some

sort of locality assumption on 𝑓 , a popular choice being a Lipschitz assumption.

All of the above examples use a “data dependent” partitioning scheme of ℳ. By

this we mean that the partitioning depends on the actual (𝑋𝑖, 𝑌𝑖) pairs. On the other

hand, in many other lines of research, “data independent” partitioning is used. For

example, standard quantizers in information theory and communications are data

independent. Locality sensitive hash functions, introduced in [18] for the problem of

approximate nearest neighbors are also data independent, though recent work [2] uses

a data dependent hash family for this problem.

In the subsequent discussion, we explore the possibilities of a “data independent”
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partitioning scheme for a locality based estimator.

3.2 A Data Independent Partitioning Scheme

All theoretical analysis of locality based estimators requires structure on 𝑃𝑋 . For

instance, if one wants a uniform bound on 𝑙(𝑥) = 𝐸[|𝑓(𝑥) − 𝑓(𝑥)|], one needs a

probability density (or pmf) bounded away from zero. Otherwise, one runs into

“black swan” problems, such as Example 2. Structure on 𝑓 can be used to alleviate

some of this, but in general is insufficient on its own in the formation of consistent

estimators, i.e. estimators where the loss function goes to 0 uniformly as 𝑛 → ∞

keeping 𝑑 and other parameters of the setup fixed.

Typically, such analysis is carried out for the case when 𝑃𝑋 is uniform for simplic-

ity. Usually, such analysis extends easily to scenarios where 𝑝𝑚𝑖𝑛 ≤ 𝑃𝑋 ≤ 𝑝𝑚𝑎𝑥, with

𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 showing up in the expressions. We shall assume 𝑃𝑋 is uniform over a

region ℛ ⊆ R𝑑 here.

Consider a data independent scheme where the region ℛ is partitioned into 𝑘

sub-regions of equal measure. Then, we have the following lemma:

Lemma 7. Consider ℳ = ℛ ⊆ R𝑑 with the 𝑙2 norm and 𝒩 = R with the 𝑙1 norm

in Definition 3. Consider a partitioning scheme that stops at level 1, resulting in a

partition of ℛ into ℛ𝑖, 1 ≤ 𝑖 ≤ 𝑘 with 𝑣𝑜𝑙(ℛ𝑖) = 𝑣𝑜𝑙(ℛ)
𝑘

and 𝑑𝑖𝑎𝑚(ℛ𝑖) ≤ 𝑠 for all

1 ≤ 𝑖 ≤ 𝑘. Here, 𝑣𝑜𝑙 denotes the Lebesgue measure, and 𝑑𝑖𝑎𝑚 the diameter of a

set. Assume that the noise 𝑍 satisfies |𝑍| ≤ 𝑧0 almost surely and E[𝑍] = 0. Assume

𝑃𝑋 ∼ 𝑈(ℛ). Assume |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀 ||𝑥− 𝑦||2, or in other words 𝑓 is 1-Lipschitz

with Lipschitz constant 𝑀 . Then by using a locality based estimator 𝑓 for this setup,

we have for any 𝑥 ∈ ℛ:

E[|𝑓(𝑥)−𝑓(𝑥)|] <

[︃
𝑀𝑑𝑖𝑎𝑚(ℛ) +

𝑧0
√

2𝜋√
𝑛

]︃
𝑒−

𝑛
𝑘 +𝑀𝑠+𝑧0

√
2𝜋

(︃
𝑒

−𝑛

2𝑘2 +

√︂
𝑘

2𝑛

)︃
. (3.1)

Proof. Let 𝒩𝑥 denote the neighborhood of 𝑥 as described in Definition 3. Then,

|𝒩𝑥| ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛, 1
𝑘
). Conditioning on |𝒩𝑥| and using the law of total expectation,
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and using subscripts 𝑥𝑖 to denote the indices of random variables corresponding to

𝒩𝑥, we have:

E[|𝑓(𝑥) − 𝑓(𝑥)|] =

(︂
1 − 1

𝑘

)︂𝑛

E
[︂⃒⃒⃒⃒
𝑓(𝑥) −

∑︀𝑛
𝑖=1 𝑓(𝑋𝑥𝑖

)

𝑛
−
∑︀𝑛

𝑖=1 𝑍𝑥𝑖

𝑛

⃒⃒⃒⃒]︂
+

𝑛∑︁
𝑙=1

𝑃 (|𝒩𝑥| = 𝑙)E

[︃⃒⃒⃒⃒
⃒𝑓(𝑥) −

∑︀𝑙
𝑖=1 𝑓(𝑋𝑥𝑖

)

𝑙
−
∑︀𝑙

𝑖=1 𝑍𝑥𝑖

𝑙

⃒⃒⃒⃒
⃒
]︃

≤
(︂

1 − 1

𝑘

)︂𝑛(︂
E
[︂⃒⃒⃒⃒
𝑓(𝑥) −

∑︀𝑛
𝑖=1 𝑓(𝑋𝑥𝑖

)

𝑛

⃒⃒⃒⃒]︂
+ E

[︂⃒⃒⃒⃒∑︀𝑛
𝑖=1 𝑍𝑥𝑖

𝑛

⃒⃒⃒⃒]︂)︂
+

𝑛∑︁
𝑙=1

𝑃 (|𝒩𝑥| = 𝑙)

(︃
E

[︃⃒⃒⃒⃒
⃒𝑓(𝑥) −

∑︀𝑙
𝑖=1 𝑓(𝑋𝑥𝑖

)

𝑙

⃒⃒⃒⃒
⃒
]︃

+ E

[︃⃒⃒⃒⃒
⃒
∑︀𝑙

𝑖=1 𝑍𝑥𝑖

𝑙

⃒⃒⃒⃒
⃒
]︃)︃

≤
[︂
𝑀𝑑𝑖𝑎𝑚(ℛ) + E

[︂⃒⃒⃒⃒∑︀𝑛
𝑖=1 𝑍𝑥𝑖

𝑛

⃒⃒⃒⃒]︂]︂(︂
1 − 1

𝑘

)︂𝑛

+

𝑀𝑠

[︂
1 −

(︂
1 − 1

𝑘

)︂𝑛]︂
+

𝑛∑︁
𝑙=1

𝑃 (|𝒩𝑥| = 𝑙)E

[︃⃒⃒⃒⃒
⃒
∑︀𝑙

𝑖=1 𝑍𝑥𝑖

𝑙

⃒⃒⃒⃒
⃒
]︃
. (3.2)

But by Hoeffding’s inequality [17], we have:

𝑃

(︃⃒⃒⃒⃒
⃒
∑︀𝑙

𝑖=1 𝑍𝑖

𝑙

⃒⃒⃒⃒
⃒ > 𝑡

)︃
≤ 2𝑒

−𝑡2𝑙

2𝑧20

⇒ E

[︃⃒⃒⃒⃒
⃒
∑︀𝑙

𝑖=1 𝑍𝑖

𝑙

⃒⃒⃒⃒
⃒
]︃
≤ 𝑧0

√
2𝜋√
𝑙

. (3.3)

Using (3.3) and applying Hoeffding again, we get:

𝑛∑︁
𝑙=1

𝑃 (|𝒩𝑥| = 𝑙)E

[︃⃒⃒⃒⃒
⃒
∑︀𝑙

𝑖=1 𝑍𝑥𝑖

𝑙

⃒⃒⃒⃒
⃒
]︃
≤ 𝑧0

√
2𝜋

(︃
𝑛∑︁

𝑙=1

𝑃 (|𝒩𝑥| = 𝑙)√
𝑙

)︃

≤ 𝑧0
√

2𝜋

(︃
𝑃
(︁
|𝒩𝑥| ≤

𝑛

2𝑘

)︁
+

√︂
𝑘

2𝑛
𝑃
(︁
|𝒩𝑥| >

𝑛

2𝑘

)︁)︃

< 𝑧0
√

2𝜋

(︃
𝑒

−𝑛

2𝑘2 +

√︂
𝑘

2𝑛

)︃
. (3.4)

Plugging in (3.3) and (3.4) in (3.2), and using (1 − 1
𝑘
)𝑘 < 𝑒−1, we get the desired:

E[|𝑓(𝑥) − 𝑓(𝑥)|] <

[︃
𝑀𝑑𝑖𝑎𝑚(ℛ) +

𝑧0
√

2𝜋√
𝑛

]︃
𝑒−

𝑛
𝑘 + 𝑀𝑠 + 𝑧0

√
2𝜋

(︃
𝑒

−𝑛

2𝑘2 +

√︂
𝑘

2𝑛

)︃
.
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3.3 A Lattice Based Partitioning Scheme

Lemma 7 offers a path towards understanding data independent partitioning and

their associated locality based estimators. Nevertheless, it is somewhat abstract in

that there are numerous degrees of freedom, such as how 𝑘 can be picked in relation

to 𝑛, what the regions ℛ𝑖 can look like, etc. Here, we offer a specialization which

uses a nested partitioning scheme based on lattices in order to establish a family of

consistent estimators. We refer the reader to [31] for a beautiful introduction to the

topic of lattices and their use in engineering applications.

The issue of using a partition scheme based on nested lattices directly is that

with Voronoi cells, one may need to reduce modulo Λ2, where Λ2 ⊆ Λ1 denotes the

coarse lattice. This can introduce nuisance terms into the loss analysis. In particular,

if one wants a uniform bound on 𝑙(𝑥) over all 𝑥, problems arise with 𝑥 in the cells

that “wrap-around” during the modulo reduction, as these do not have good locality

properties. If one is interested simply in an expectation over 𝑥 with respect to some

reasonable distribution, this is fine as such “wrap-arounds” are not too frequent.

Nevertheless, [31, Sec. 8.4.1] offers an alternative where one considers parallelepiped

cells, in which case these issues do not arise.

Here, we give an illustration of this using a scaled cubic lattice in the following

proposition.

Proposition 8. Let ℛ = [0, 1]𝑑, 𝑅𝑖 for 1 ≤ 𝑖 ≤ 𝑘 = 𝑞𝑑 be a parallelepiped partition

generated by the q-scaled cubic lattice {𝑥 : 𝑥 = 1
𝑞
(𝑥1, 𝑥2, . . . , 𝑥𝑑), 0 ≤ 𝑥𝑖 ≤ 𝑞}. Let

𝑛 = 𝑘2+𝜖 for a fixed 𝜖 > 0 (one can handle non-integral 𝑛 by taking the ceiling, or

imposing restrictions on the form of 𝑞, such that it must be a perfect square for the

case of 𝜖 = 1
2𝑑

). Then under the assumptions of Lemma 7, and using the locality based
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estimator outlined there, we have:

E[|𝑓(𝑥)−𝑓(𝑥)|] <
[︁
𝑀

√
𝑑 + 𝑧0

√
2𝜋𝑞−

(2+𝜖)𝑑
2

]︁
𝑒−𝑞(1+𝜖)𝑑

+
𝑀

√
𝑑

𝑞
+𝑧0

√
2𝜋

(︂
𝑒−

𝑞𝜖𝑑

2 +
1√
2
𝑞−

(1+𝜖)𝑑
2

)︂
.

(3.5)

Thus, as 𝑞 → ∞, we have consistency.

Proof. Proof is immediate from Lemma 7. Indeed, applying Lemma 7 and substitut-

ing the appropriate values, we have:

E[|𝑓(𝑥)−𝑓(𝑥)|] <
[︁
𝑀

√
𝑑 + 𝑧0

√
2𝜋𝑞−

(2+𝜖)𝑑
2

]︁
𝑒−𝑞(1+𝜖)𝑑

+
𝑀

√
𝑑

𝑞
+𝑧0

√
2𝜋

(︂
𝑒−

𝑞𝜖𝑑

2 +
1√
2
𝑞−

(1+𝜖)𝑑
2

)︂
.

In particular, letting 𝑞 → ∞, we have E[|𝑓(𝑥) − 𝑓(𝑥)|] → 0 uniformly over 𝑥, i.e we

have consistency as desired.

3.4 Conclusions

1. We outlined a general viewpoint on a variety of popular classification and re-

gression methodologies, including but not limited to nearest neighbor methods,

CART, and linear classifiers. All of these estimators fundamentally rely on some

locality assumption in a metric space and a partitioning scheme which relies on

such locality.

2. We discussed how these popular methods rely on a data dependent partitioning,

and address the question of whether data independent partitioning can be used

to get consistency. Lemma 7 and its specialization via scaled cubic lattices in

Proposition 8 demonstrate that consistent estimators can be obtained.

3. As can be seen from (3.5), the number of samples used is exponential in 𝑑 as

a function of the loss level. This is a fundamental limitation under Lipschitz

assumptions on 𝑓 . In particular, random forests and nearest neighbor methods

also suffer from this curse of dimensionality. It would thus be of interest to see

whether locality based estimators can be adapted to make use of structure on 𝑓

47



and remove this exponential complexity. A stronger question would be whether

data independent partitioning is sufficient for this purpose.
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Chapter 4

Conclusion

In this thesis we primarily addressed the question of learning ANOVA decompositions

over GF(2) and R. The order of the ANOVA decomposition serves as a useful mea-

sure of the complexity of a model that is easily interpretable in terms of the degree of

interactions between different coordinates. In the context of ANOVA decompositions

over GF(2), we obtained fundamental limits on the performance of learning algo-

rithms. In particular, we demonstrated a learning hierarchy of statistical complexity

from linear to exponential in the dimension, justifying the title of this thesis. We

also demonstrated the usefulness of the sparsity paradigm in this context. Further-

more, we discussed this problem in both an “adaptive” and “one-shot” setting. We

showed that, somewhat surprisingly, the increased freedom from adaptivity does not

result in significant changes to the statistical complexity. It will be interesting to

see whether this statement holds up with respect to the computational complexity of

learning algorithms for these tasks. In the context of R, we obtained a glimpse into

the possibilities of learning beyond the kernel assumptions of [19]. In future work,

we hope to refine this further to account for noise and a lack of query access, thus

making the methods more robust and general. Moreover, the construction of low

computational complexity algorithms for the above problems is another interesting

direction for future work.

We also developed a general viewpoint on a wide class of popular regression meth-

ods. We introduced the concept of data independent partitioning as a specialization
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of this general viewpoint. By using a lattice based partitioning scheme, we demon-

strated that this can achieve statistical consistency. Nevertheless, this method also

suffers from the fundamental curse of dimensionality in higher dimensions. It would

thus be interesting to figure out whether restrictions on the class of functions can be

naturally incorporated into these methods in order to reduce the complexity.
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