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Abstract

In this dissertation, we primarily study some problems that revolve around Fourier
analysis. More specifically we focus on the magnitudes of the frequency components.
Firstly, we perform a study on the hypercube. It is well known that the Delsarte lin-
ear programming bounds provide rich information on the magnitudes of the Fourier
coefficients, grouped by Hamming weight. Classically, such information is primarily
used to attack coding problems, where the objective is to maximize cardinality of a
subset of a metric space subject to a minimum distance constraint. Here, we use it to
study anticoding problems, where the objective is to maximize cardinality of a subset
of a metric space subject to a maximum distance (diameter) constraint. One moti-
vation for such study is the problem of finding memories that are cheap to update,
where the cost of an update is a function of the distance in the metric space. Such a
view naturally supports the study of different cost functions going beyond hard diam-
eter constraints. We work accordingly with different cost functions, with a particular
emphasis on completely monotonic functions. Our emphasis is on the phenomenon of
“universal optimality”, where the same subset (anticode) simultaneously optimizes a
wide range of natural cost functions. Among other things, our work here gives some
answers to a question in computer science, namely finding Boolean functions with
maximal noise stability subjected to an expected value constraint.

Secondly, we work with Fourier analysis on the integers modulo a number by draw-
ing upon Nazarov’s general solution to the “coefficient problem”. Roughly speaking,
the coefficient problem asks one to construct time domain signals with prescribed
magnitudes of frequency components, subject to certain natural constraints on the
signal. In particular, Nazarov’s solution works with 𝑙𝑝 constraints in time. This
solution to the coefficient problem allows us to give an essentially complete resolu-
tion to the mathematical problem of designing optimal coded apertures that arises in
computational imaging. However, the resolution we provide is for an 𝑙∞ constraint
on the aperture, corresponding to partial occlusion. We believe it is important to
also examine a binary valued ({0, 1}) constraint on the aperture as one does not
need to synthesize partial occluders for such apertures. We therefore provide some
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preliminary results as well as directions for future research.
Finally, inspired by the recent breakthroughs in understanding the 𝑑 = 8, 24

cases of sphere packing and universal optimality in R𝑑, we attempt to show that the
associated lattices (𝐸8 and the Leech lattice for 𝑑 = 8, 24 respectively) are also optimal
for the problem of vector quantization in the sense of minimizing mean squared error.
Accordingly, we develop a dispersion and anticoding based approach to lower bounds
on the mean squared error. We also generalize Tóth’s method, which shows optimality
of the hexagonal lattice quantizer for 𝑑 = 2, to arbitrary 𝑑. To the best of our
knowledge, these methods give the first rigorous improved lower bounds for the mean
squared error for all large enough 𝑑 since the work of Zador over 50 years ago.

Thesis Supervisor: Gregory Wornell
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Henry Cohn
Title: Senior Principal Researcher, Microsoft Research New England
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Chapter 1

Introduction

Regarding the researches of d’Alembert and Euler could one not add

that if they knew this expansion, they made but a very imperfect use of

it. They were both persuaded that an arbitrary and discontinuous

function could never be resolved in series of this kind, and it does not

even seem that anyone had developed a constant in cosines of multiple

arcs, the first problem which I had to solve in the theory of heat.

Joseph Fourier,1808-9

1.1 Motivation

In science and engineering, the modern problems we face often have a rich history

lying underneath their surface. Understanding this history is often crucial in the

resolution of these problems. This dissertation attempts to defend this point of view

through a set of case studies, all revolving around the topic of Fourier analysis.

Fourier analysis may be attributed to the work of Joseph Fourier on the theory of

heat transfer [48]. Roughly speaking, Fourier analysis allows one to study the way a

general function can be represented as a linear combination of simpler trigonometric

functions (sinusoids). The viewpoint of a function as a combination of sinusoids is

certainly a very useful one, and seems to be how Fourier himself envisioned it.

Over time, however, as Fourier’s ideas were cultivated and their impact realized,
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more sophisticated points of view emerged. For example, the trigonometric functions

can be replaced by complex exponentials, and the fundamental role of the complex

exponentials comes from the fact that they are simultaneous eigenfunctions for the

translation group generated from the basic translation: (𝑇𝑓)(𝑥) , 𝑓(𝑥+ 1).

Such a viewpoint may be developed further into a theory of the Fourier transform

on groups. In the abelian case (including Hamming space (Z/𝑞Z)𝑑), the theory is

simpler as the Fourier transform remains scalar valued, and the fundamental dual

objects are characters. Finiteness of the group also helps keep things simple. Details

at a level suitable for both engineers and mathematicians may be found in e.g. the

wonderful book of Terras [112], or the article of Forney [47]. We shall review this

material in the context of finite abelian groups, such as Hamming space (Z/𝑞Z)𝑑,

with minimal prerequisites. The elementary approach for finite abelian groups has

the advantage of being accessible to more people, though to appreciate the generality

and richness of these ideas and plumb deeper one can study the representation theory

of finite groups (e.g. [103, 72]) and compact/locally compact groups (e.g. [97]).

We now briefly describe the contents of this dissertation and how they relate to

Fourier analysis on three spaces, namely (Z/𝑞Z)𝑑,Z/𝑛Z,R𝑑.

1.1.1 Hamming space

The primary motivation for our study on Hamming space in Chapter 2 is understand-

ing “anticodes” better. Here, the classical question is to maximize the size of a subset

of {0, 1}𝑛 subject to an upper bound on distances between pairs of points. We call this

problem a isodiametric problem. The reason we call such subsets “anticodes” is that

one can replace the upper bound with lower bound to yield the classical central ques-

tion of coding theory. It is somewhat remarkable that in spite of the coding theory

question remaining unresolved, Ahlswede and Khachatrian [7, Diametric Theorem]

obtained a complete resolution to the anticoding question in the above isodiametric

sense.

Here, we generalize the definition of optimality from the isodiametric sense to

that of optimizing a two point potential function subject to a cardinality constraint.
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We employ the classical Delsarte linear programming (LP) bounds, which are in-

timately connected to Fourier analysis. The LP bounds turn out to yield sharp

answers for some special values of the cardinality. We give an application to a

problem in theoretical computer science, namely that of finding a Boolean function

𝑓 : {−1, 1}𝑛 → {−1, 1} which maximizes noise stability subject to an expected value

constraint. Previously, sharp answers were known only for E(𝑓) = 0, where the answer

is a dictator function 𝑓(𝑥𝑛) = 𝑥1 irrespective of the value of noise. Here, we resolve

E(𝑓) = ±1/2, where an answer is given by 𝑓(𝑥𝑛) = 𝑥1 ∧ 𝑥2 and 𝑓(𝑥𝑛) = 𝑥1 ∧ 𝑥2,

irrespective of the value of noise. We generalize such results to a non-binary setting,

namely 𝑓 : {0, 1, . . . , 𝑞 − 1}𝑛 → {−1, 1}. We also exhibit a stacking construction of

anticodes, and utilize it to prove that the set of universal optima for noise stability

across the noise level is a sparse set.

1.1.2 Discrete Fourier transforms

The primary motivation for our study of the discrete Fourier transform in Chapter 3

is computational imaging, specifically the problem of designing good coded aperture

systems. Roughly speaking, coded aperture imaging systems consist of a perforated

plate placed before the imaging plane, and an associated computational inversion

procedure to recover the scene of interest from the image formed by a superposition

of shifted copies of the scene (a convolution) through the various perforations. The

basic design problem is to come up with a good perforation pattern.

In [8], we characterize the fundamental limits of coded aperture imaging systems

up to universal constants by drawing upon a theorem of Nazarov regarding Fourier

transforms. The theorem itself is more general, and we will elaborate on this. Our

work is performed under a simple propagation and sensor model that accounts for

thermal and shot noise, scene correlation, and exposure time. Focusing on mean

square error as a measure of linear reconstruction quality, we show that appropriate

application of a theorem of Nazarov leads to essentially optimal coded apertures,

up to a constant multiplicative factor in exposure time. Additionally, we develop a

heuristically efficient algorithm to generate such patterns that explicitly takes into
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account scene correlations. This algorithm finds apertures that correspond to local

optima of a certain potential on the hypercube, yet are guaranteed to be tight. Finally,

for i.i.d. scenes, we show improvements upon prior work by using spectrally flat

sequences with bias. The development primarily focuses on one dimensional apertures

for conceptual clarity; the natural generalizations to 2D are also discussed.

1.1.3 Euclidean space

Fourier analysis played a crucial role in the resolution of the sphere packing problem

(the coding problem for Euclidean space) and associated universal optimality phe-

nomena for R𝑑, 𝑑 = 8, 24 [120], [27], [28]. We agree with the experts and believe that

the associated universally optimal structures, namely the lattices 𝐸8 for 𝑑 = 8 and

the Leech lattice for 𝑑 = 24 are also optimal for the quantization problem in the sense

of minimizing mean squared error in the so-called “high-resolution limit”, and refer

the impatient reader to Conjecture 6 for a precise statement.

We still believe that Fourier analysis will play a role in resolving Conjecture 6, but

are currently unable to shed any light on such an idea. Instead, we develop alternative

methods that are still capable of yielding improved lower bounds on the mean squared

error for lattice as well as non-lattice quantizers. These bounds represent the first rig-

orous improvement over Zador’s sphere bound [128], [129], though Conway and Sloane

have a conjectured bound [31]. We obtain distinct lower bounds for lattice quantizers

versus general quantizers, with stronger results for lattice quantizers. The results for

lattices are numerically verifiable albeit conjectural. In either setting, our bounds are

not as strong as the one conjectured by Conway and Sloane. At a high level, our

approach may be viewed as a generalization of the work of Tóth/Newman [116], [88]

from dimension 𝑑 = 2 to larger 𝑑. We achieve this by utilizing upper bounds on

face counts of Voronoï cells from Minkowski/Voronoï [84], [121] in the lattice case,

and considerations of dispersion and upper bounds on sphere packing density in the

general case. One route to the sphere packing density is through LP bounds. This

second “dispersion method” thus indirectly relies on Fourier analysis, through the

links between the LP bounds and Fourier analysis that we first alluded to above with
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Hamming space and that we will describe in greater detail in Chapter 2. However,

there are other approaches to nontrivial upper bounds on packing density, such as

Rankin’s method [94], which extended earlier work of Blichfeldt [20]. As such, we do

not recommend reading too much into this link with Fourier analysis.

1.1.4 General remarks

We shall develop these ideas in a self-contained manner in as elementary a fashion as

possible. In particular, we provide proofs of facts that may be found in the original

sources or other expositions either explicitly or implicitly, unless they are well known

to a general audience of scientists/engineers, or take us too far away from our main

thread. As a concrete example, we assume Cauchy-Schwarz is a well-known inequality,

but that the discrete Fourier transform of quadratic residue sequences [51], the Euler-

Maclaurin formula, or Voronoï’s upper bound on the face counts of Voronoï cells of

a lattice [121] are not well-known.

For the reader who wishes to refresh their familiarity with certain concepts, we

provide some book references. For Chapter 2, we assume some rudimentary famil-

iarity with Hamming space. The freely available book by O’Donnell [89] covers that

and much more. For Chapter 3, we assume some familiarity with stastical signal

processing, estimation, and elementary number theory. For the signal processing and

estimation aspects, the book by Luenberger [80] covers all that we need and more at

a level suitable for both mathematicians and engineers. There are countless sources

for elementary number theory freely available online, such as the book by Stein [108].

For Chapter 4, we assume some familiarity with the basic notions of quantization.

The excellent survey by Gray and Neuhoff [57] covers all that we need and more. It

also has the virtue of tracing the history of the field accurately.

We apologize in advance to the mathematicians who desire a higher level of so-

phistication, and to the engineers who just want to build things and move on. Good

examples of the balance we are striving towards are anything written by Donald

Knuth, in particular the outstanding discrete mathematics book with Graham and

Patashnik [56]. Naturally, we do not reach that level either, so we must apologize yet
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again.

A few words on notation. We assume knowledge of standard asymptotic notation

𝑜(), 𝑂(),Θ(),Ω(), 𝜔() with their usual meanings. We simply use the word constant

to refer to what many authors call a universal constant. We shall call scenarios with

exactly matching upper and lower bounds sharp, and the analagous situations with

upper and lower bounds that remain within a constant multiplicative factor of each

other tight. We assume that the reader is familiar with the “indicator/characteristic

function” notation 1(𝑥 = 0),1(𝑥 ∈ 𝒜). We sometimes find it convenient to follow the

analytic number theorists and write

𝑒(𝑧) , 𝑒2𝜋𝑖𝑧.

Conclusions and directions for future research are provided on a chapter by chap-

ter basis, once again in line with the self-contained philosophy. As such, our final

Chapter 5 contains only certain general remarks about this dissertation and where

one can cultivate ideas further.
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Chapter 2

Linear Programming Bounds and

Anticodes in Hamming Space

That combinatorics and information sciences often come together is no

surprise - they were born as twins (Leibniz “Ars Combinatoria” gives

credit to Raimundus Lullus from Catalania, who wanted to create a

formal language).

Rudolf Ahlswede, 2006 Shannon Lecture

2.1 Introduction

In coding theory, the basic question is to maximize the size of a set subject to a

minimum distance requirement. The analogous dual question is to maximize the size

of a set subject to a maximum distance constraint. This maximization problem may

be termed as an anticoding or more precisely an isodiametric problem. We note that

this duality can be made precise in terms of the anticoding bound of Delsarte [35,

Thm 3.9]. This anticoding bound is sharper than the sphere-packing bound when a

optimal solution to the isodiametric problem is not given by a ball.

In Hamming space, a complete resolution of the isodiametric problem was given

by [7, Diametric Theorem], building upon techniques as well as the complete reso-

lution of the analogous question for Johnson space given in [6]. In the non-binary
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setting of Hamming space, the optimal anticode is not in general a ball, but rather

a Cartesian product of a ball and a subcube. In particular, this implies that the an-

ticoding bound is sharper than the classical sphere-packing bound in the non-binary

setting, as noted in [4].

Our primary goal in this chapter is to address anticoding problems in a com-

plementary manner to the diametric perspective of [6, 7]. Specifically, note that in

isodiametric problems the goal is to maximize the cardinality subject to a constraint

that may be viewed as an upper bound on a potential energy characterized by a hard

pair potential function. Our aim here is to “flip” this perspective, and ask energy

minimization questions subject to a cardinality constraint. Although the two ques-

tions are obviously related (see e.g. (2.1)), we find the phenomena sufficiently rich

(e.g. Theorems 2, 3, 4) to warrant investigation in their own right. We note that the

complementary investigation of anticodes via potential energy may be traced in [5, pg

vii,239]. There, the authors describe the question of the average cost of a uniformly

randomly chosen update within a subset of a metric space. The authors then special-

ize to a cost function that decomposes on a product space as a sum of cost functions

on the individual coordinates.1 In general, taking a hard cost constraint with cost

0 for distances below a threshold, and ∞ otherwise leads one naturally to diametric

problems. Our work may be viewed in that framework as considering other cost func-

tions, with particular emphasis on completely monotone ones which we define in 4.

A more direct motivation is viewing our work as addressing the anticoding analog of

the ground state version of the coding problem as described in [29]. Along the way,

we draw a connection with the problem of maximum noise stability in theoretical

computer science, and thereby answer a folklore question of Mossel that we heard

from Razenshteyn and Ramnarayan in Corollary 1. We use this perspective to guide

our work in Section 2.5 onwards.

We first define what we mean by energy below.

Definition 1. Let (𝒳 , 𝑑) be a finite metric space, and 𝑓 : R → R∪{±∞} a potential

1This perspective and a motivation for such study in terms of updating memories with cost
constraints was also emphasized in Ahlswede’s 2006 Shannon lecture [3].
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function. Let 𝒞 ⊆ 𝒳 . We then define the potential energy of 𝒞 with respect to the

potential function 𝑓 to be

𝐸𝑓 (𝒞) ,
1

|𝒞|
∑︁
𝑥,𝑦∈𝐶
𝑥 ̸=𝑦

𝑓(𝑑(𝑥, 𝑦)).

Then we may define two fundamental limits associated with the problem of finding

energy minimizing (ground) states.

Definition 2.

𝑒*(𝑓, 𝑐) , min
𝒞⊆𝒳 :|𝒞|=𝑐

𝐸𝑓 (𝒞).

𝑐*(𝑓, 𝑒) , max
𝒞⊆𝒳 :𝐸𝑓 (𝒞)≤𝑒

|𝒞|.

In general, sharp information about one of these functions does not necessarily

translate into sharp information about the other function, even when one confines

oneself to “interesting” potential functions, such as exponential decays. What is triv-

ially clear however is that 𝑐*, 𝑒* are related by

𝑐*(𝑓, 𝑒*(𝑓, 𝑐)) ≥ 𝑐 (2.1a)

𝑒*(𝑓, 𝑐*(𝑓, 𝑒)) ≤ 𝑒. (2.1b)

A natural question then is what constitutes an interesting potential function. One

class of examples is readily furnished by the isodiametric problem, that is finding

max𝒞⊆𝒳 :𝑑(𝒞)≤𝑑 |𝒞|, where:

Definition 3. The diameter of a set 𝒞 in a finite metric space (𝒳 , 𝑑) is given by:

𝑑(𝒞) , max𝑥,𝑦∈𝒞 𝑑(𝑥, 𝑦).

It is then clear that the isodiametric problem is nothing but the question of de-

termining 𝑐*(𝑓, |𝒳 |) for

𝑓(𝑥) =

⎧⎪⎨⎪⎩1 𝑥 ≤ 𝑑

∞ 𝑥 > 𝑑.
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Another class of functions, namely that of completely monotonic functions has

proved to be very fruitful from a theoretical perspective in these investigations. More-

over, in the Euclidean setting, special cases of completely monotonic functions such

as power laws have a natural physical interpretation. In coding theory, optimizing

these potential functions gives information on the probability of error via the union

bound.

In the discrete setting, completely monotonic functions are defined as follows:

Definition 4. Let ∆ denote the finite difference operator, defined by ∆𝑓(𝑛) , 𝑓(𝑛+

1) − 𝑓(𝑛). Then, a function 𝑓 : {𝑎, 𝑎 + 1, . . . , 𝑏} is said to be completely monotonic

if its iterated differences alternate in sign, that is (−1)𝑘∆𝑘𝑓(𝑖) ≥ 0 whenever 𝑘 ≥ 0

and 𝑎 ≤ 𝑖 ≤ 𝑏− 𝑘.

Of crucial importance for us is the fact that 𝑓(𝑟) = 𝛾𝑟 for 0 ≤ 𝛾 ≤ 1 is a

completely monotonic function. Minimizing potential energy with respect to such 𝑓

favors repulsion between points, and is a ground state analog of the coding problem. A

natural, perhaps naive view of anticoding is simply to flip the sign of 𝑓 , or equivalently

maximize the potential energy associated to such 𝑓 .

What we find surprising is that this approach still retains an “operational sig-

nificance” in the anticoding setting via a connection with the problem of maximal

noise stability in theoretical computer science. Noise stability was first studied ex-

plicitly in [18]; see for instance [89, 2.4] for an introduction to the topic. Typically,

noise stability is studied for Boolean functions 𝑓 : {0, 1}𝑛 → {0, 1}. However, as the

methods we employ apply more generally, we shall define an analogous notion for

𝑓 : F𝑛
𝑞 → {0, 1}. Although this notation suggests that F𝑞 is a finite field, we shall not

use the field structure.

As the name may suggest, noise stability is measured by Pr(𝑓(𝑥) = 𝑓(𝑦)) where

𝑦 is a noisy version of 𝑥. Typically, one is interested in the behavior of functions

on product spaces, and thus it is natural to consider product transition probability

kernels, though it can be defined in greater generality.

We define it rigorously as follows in the context of Hamming space, and also define

22



the problem of maximal noise stability subject to an expected value constraint.

Definition 5. Let 𝑓 : F𝑛
𝑞 → {0, 1} be a Boolean valued function. Let 𝑟(·|·) be a row-

stochastic 𝑞× 𝑞 transition probability matrix. We define a kernel 𝑠(·|·) on the product

space F𝑛
𝑞 . Typically, 𝑠 is a product kernel given by 𝑠(𝑏𝑛|𝑎𝑛) =

∏︀𝑛
𝑖=1 𝑟(𝑏𝑖|𝑎𝑖) ∀𝑎𝑛 ∈ F𝑛

𝑞 .

Let x ∼ 𝑈(F𝑛
𝑞 ) be a uniformly distributed random variable. Let y be coupled with x

by sending x through the kernel 𝑠. Then the noise stability of 𝑓 is given by

Stab𝑠(𝑛, 𝑓) , Pr(𝑓(x) = 𝑓(y)).

We also define the maximal noise stability function as

Stab*
𝑠(𝑛, 𝜇) , max

𝑓 :E[𝑓(x)]=𝜇
Stab𝑠(𝑛, 𝑓).

Since it is usually clear that we are referring to a product kernel, we will often simply

write Stab𝑟(𝑛, 𝜇). Furthermore, when 𝑟 is parametrized in a natural way, such as a

binary symmetric channel (BSC) with parameter 𝜖, we may write Stab𝜖(𝑛, 𝜇). Similar

remarks apply to Stab*
𝑟,Stab

*
𝜖 .

We also find it convenient to define the notation

Stab𝑠(𝑛, 𝒞) , Stab𝑠(𝑛,1(𝑥 ∈ 𝒞)).

Note that we do not strictly follow the conventions of [89, pg 53], which defines

Stab𝑠(𝑛, 𝑓) , E[𝑓(x)𝑓(y)]. The reason for this is that the above definition is better

suited for generality. Note also that it is common in the study of Boolean functions

to work with 𝑓 : {−1, 1}𝑛 → {−1, 1}; this simply corresponds to a relabeling 0 ↔

−1, 1 ↔ 1. With the {−1, 1} output convention, it is clear that the definition of noise

stability adopted in [89, pg 53] is simply an affine transformation of Definition 5. For

the sake of notational clarity, in all rigorous statements we shall make it clear which

representation we are working with.
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2.2 Main results

We now give precise statements of the main results that we establish in this chapter.

Lemmas, proofs, and establishment of statements of possible independent interest will

occupy subsequent sections.

2.2.1 Linear programming and isodiametry in Hamming space

We first revisit in Section 2.3 the diametric theorem of [7] from a linear program-

ming (LP) bound perspective, and rederive a sharp bound for the subcube cases.

Our demonstration of the sharp cases of the LP bound for isodiametry in Hamming

space may be viewed as an analog of the work of Wilson [124], who used LP to

establish special cases of the complete diametric theorem obtained in [6]. We note

that Shinkar [104] has also established the subcube cases using spectral techniques.

Indeed, the spectral techniques used in [104] are implicitly contained in the language

of association schemes and LP bounds of [35].

Definition 6. A subcube of cardinality 𝑞𝑘 in Hamming space F𝑛
𝑞 is defined by 𝒞𝑞,𝑘 =

{𝑥 : 𝑥𝑖 = 0 ∀1 ≤ 𝑖 ≤ 𝑛− 𝑘}.

Theorem 1. Let 𝑁𝑞(𝑛, 𝑑) , max𝒞⊆F𝑛
𝑞 :𝑑(𝒞)≤𝑑 |𝒞|. Then if 𝑑 ≤ 1 or 𝑑 ≥ 𝑛 − 𝑞 + 1,

𝑁𝑞(𝑛, 𝑑) = 𝑞𝑑, and this may be deduced from the LP bounds. Moreover, equality is

attained by subcubes: 𝒞 = 𝒞𝑞,𝑑.

2.2.2 Universal optimality for special subcubes

We next establish in Section 2.4 the fact that some special subcubes are simultaneous

ground states in the anticoding sense for classes of potential functions. This phe-

nomenon is called universal optimality as defined in [26]. However, it turns out that

for some subcubes we get even stronger information than being universally optimal

with respect to all completely monotonic functions, and in fact we can deduce uni-

versal optimality with respect to all monotonic functions. Most of Theorem 2 follows
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in a natural manner from the LP bounds, except for (2.6) that relies on a certain

inequality for Krawtchouk polynomials established in Lemma 13.

Theorem 2. Consider the class ℱ of all nonnegative monotonically nondecreasing

potential functions 𝑓 : {0, 1, . . . , 𝑛} → R, that is with 𝑓(𝑖) ≤ 𝑓(𝑖+ 1) ∀0 ≤ 𝑖 ≤ 𝑛− 1,

and 𝑓(0) ≥ 0. Then ∀𝑓 ∈ ℱ , 𝑞 ≥ 2 ∈ N, 𝑛 ≥ 2

𝑒*(𝑓, 𝑞) = 𝐸𝑓 (𝒞𝑞,1) (2.2)

𝑒*(𝑓, 𝑞2) = 𝐸𝑓 (𝒞𝑞,2) (2.3)

𝑒*(𝑓, 𝑞𝑛−1) = 𝐸𝑓 (𝒞𝑞,𝑛−1) (2.4)

𝑒*(𝑓, 𝑞𝑛) = 𝐸𝑓 (𝒞𝑞,𝑛). (2.5)

Furthermore, if 𝑞 > 2, we have for all 𝑓 ∈ ℱ and 𝑛 ≥ 2

𝑒*(𝑓, 𝑞𝑛−2) = 𝐸𝑓 (𝒞𝑞,𝑛−2). (2.6)

Now consider the class 𝒢 of all negations of completely monotonic potential func-

tions 𝑓 : {0, 1, . . . , 𝑛} → R. In other words, 𝑓 ∈ 𝒢 iff (−1)𝑘+1∆𝑘𝑓(𝑖) ≥ 0 whenever

𝑘 ≥ 0 and 0 ≤ 𝑖 ≤ 𝑛− 𝑘. Then for 𝑞 = 2, we have for all 𝑓 ∈ 𝒢 and 𝑛 ≥ 2

𝑒*(𝑓, 2𝑛−2) = 𝐸𝑓 (𝒞2,𝑛−2). (2.7)

As rather simple corollaries of Theorem 2, we obtain the following implications for

the problem of maximal noise stability subject to an expected value constraint. Our

deduction of these statements for maximal noise stability is based on a connection

between anticoding and maximum noise stability that we develop in Section 2.5.

In binary Hamming space, we have the following.

Corollary 1. Let 𝑞 = 2, and let us work with functions 𝑓 : {−1, 1}𝑛 → {−1, 1}. Let

the transition probability kernel 𝑤 be given by the family of BSC(𝜖). In other words,
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𝑤(1|1) = 𝑤(−1| − 1) = 1 − 𝜖 and 𝑤(−1|1) = 𝑤(1| − 1) = 𝜖. Let

𝑔(𝑥) =
𝑥1𝑥2 + 𝑥1 + 𝑥2 − 1

2
= 𝑥1 ∧ 𝑥2

where ∧ denotes logical "and". Then ∀0 ≤ 𝜖 ≤ 1
2

and ∀𝑛 we have

Stab*
𝜖

(︂
𝑛,

−1

2

)︂
= Stab𝜖(𝑛, 𝑔).

Similarly, we have

Stab*
𝜖

(︂
𝑛,

1

2

)︂
= Stab𝜖(𝑛,−𝑔).

We also have the (well known)

Stab*
𝜖(𝑛, 0) = Stab𝜖(𝑛, ℎ)

where

ℎ(𝑥) = 𝑥1.

Corollary 1 answers a “folklore” question of Mossel that we first heard of from

Razenshteyn and Ramnarayan.

In non-binary Hamming space, we have the following.

Corollary 2. Let 𝑞 > 2, and let us work with functions 𝑓 : F𝑛
𝑞 → {0, 1}. Let the

transition probability kernel 𝑤 be given by the family of 𝑞-SC(𝜖). In other words,

𝑤(𝑦|𝑥) = 1 − 𝜖 if 𝑦 = 𝑥, and 𝑤(𝑦|𝑥) = 𝜖
𝑞−1

otherwise. Let 𝑔1(𝑥) = 𝑥1 and 𝑔2(𝑥) =

1(𝑥1 = 0)1(𝑥2 = 0). Then ∀0 ≤ 𝜖 ≤ 1 − 1
𝑞

and ∀𝑛 we have

Stab*
𝜖

(︂
𝑛,

1

𝑞

)︂
= Stab𝜖(𝑛, 𝑔1),

Stab*
𝜖

(︂
𝑛,
𝑞 − 1

𝑞

)︂
= Stab𝜖(𝑛, 𝑔1),
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We also have

Stab*
𝜖

(︂
𝑛,

1

𝑞2

)︂
= Stab𝜖(𝑛, 𝑔2),

Stab*
𝜖

(︂
𝑛,
𝑞2 − 1

𝑞2

)︂
= Stab𝜖(𝑛, 𝑔2),

Here, 𝑓 denotes the logical complement of 𝑓 .

We note that the results for measures 1
4
, 1
2

are in some sense anticipated by the

work of [50], who show (in our language) the optimality of subcubes of measure 1
4
, 1
2

for the cost function 𝑓(𝑥) = 𝑥.

2.2.3 A mean value theorem for noise stability

We note that Theorem 2 and the corresponding noise stability corollaries 1, 2 refer

to a 𝑞-SC channel. The LP bounds (or their SDP generalizations) do not apply to

general channels, and we are therefore unable to give sharp answers for such channels,

even ones coming from a product noise. However, in Section 2.6, we prove a channel

comparison, and show that the maximum noise stability for a general channel can be

compared with the corresponding quantity for a 𝑞-SC with appropriate noise level 𝜖.

All of the statements in Section 2.6 follow from a statement that we call a mean value

theorem for noise stability :

Theorem 3. Let Aut denote the group of distance preserving automorphisms of Ham-

ming space F𝑛
𝑞 . Define a group action of Aut on Boolean valued functions 𝑓 : F𝑛

𝑞 →

{0, 1} by (𝜎𝑓)(𝑥) = 𝑓(𝜎𝑥) where 𝜎 ∈ Aut. Let 𝑠(·|·) denote a 𝑞𝑛 × 𝑞𝑛 probability

kernel. Let 𝑡(·|·) be a “symmetrized version” of 𝑠, given by

𝑡(𝑦|𝑥) =
1

|Aut|
∑︁
𝜎∈Aut

𝑠(𝜎𝑦|𝜎𝑥). (2.8)

Then we have
1

|Aut|
∑︁
𝜎∈Aut

Stab𝑠(𝑛, 𝜎𝑓) = Stab𝑡(𝑛, 𝑓). (2.9)
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2.2.4 Large 𝑛 and balls versus subcubes

From the above discussion, it is clear that both Hamming balls and subcubes have

a role to play in Hamming space for anticoding problems. In Section 2.7 we com-

bine Hamming balls and subcubes by a stacking construction to prove that universal

optima (in the sense of noise stability across the 𝑞-SC(𝜖) family) form a sparse set:

Theorem 4. Let 𝒮 denote the set of cardinalities 0 ≤ 𝑐 ≤ 𝑞𝑛 where there exists a

universally optimal anticode 𝒞 with |𝒞| = 𝑐, where the universal optimality is in the

sense of noise stability across the 𝑞-SC(𝜖) with 𝜖 ∈ [0, 1 − 1
𝑞
]. Then, |𝒮|

𝑞𝑛
= 𝑜(1) as

𝑛→ ∞.

Along the way, we establish a rigorous definition of Stab*
𝑟(∞, 𝜇) for any product

noise generated by the kernel 𝑟(·|·) in Proposition 5. The rigorous definition is meant

to capture a large 𝑛 limit. The Lemmas 15, 17 that we use to establish 5 also play a

role in our proof of 4.

2.3 Linear programming and isodiametry in Ham-

ming space

We now prove Theorem 1. As noted in Section 2.2, the theorem itself is completely

subsumed by the complete diametric theorem of [7], and the subcube cases have been

derived independently of us by spectral techniques in [104]. As such, the purpose

of this section is to introduce the LP bounds in Hamming space which cover the

techniques used in [104] and more importantly play a key role in the remainder of

this chapter.

2.3.1 LP bounds and Fourier analysis on Hamming space

First, we formulate the LP bounds. Suppose

𝒞 ⊆ F𝑛
𝑞 .
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The Delsarte bounds are linear constraints on the distance distribution

𝐴𝑖 ,
1

|𝒞|
|{(𝑥, 𝑦) ∈ 𝒞 × 𝒞 : 𝑑(𝑥, 𝑦) = 𝑖}|. (2.10)

As we are working in Hamming space, here 𝑑(𝑥, 𝑦) is the Hamming distance between

𝑥 and 𝑦.

We now define the Krawtchouk polynomials.

Definition 7.

𝐾𝑘(𝑥) = 𝐾𝑘(𝑥;𝑛) = 𝐾𝑘(𝑥;𝑛, 𝑞)

=
𝑘∑︁

𝑗=0

(−1)𝑗(𝑞 − 1)𝑘−𝑗

(︂
𝑥

𝑗

)︂(︂
𝑛− 𝑥

𝑘 − 𝑗

)︂
. (2.11)

Then the Delsarte inequalities [35, Thm 3.3,4.2] are

𝑛∑︁
𝑖=0

𝐴𝑖𝐾𝑗(𝑖) ≥ 0 ∀0 ≤ 𝑗 ≤ 𝑛. (2.12)

These inequalities are central in coding theory, and so we believe it is worth having

a look at a proof of these inequalities and how they are connected to Fourier analysis.

All of this exposition on the Delsarte inequalities is in some sense “classical” and is

either explicitly or implicitly contained in his seminal work [35]. For readers who

want a quick derivation of the inequalities themselves, we recommend [118, Sec. 5.3].

Perhaps it is useful to first understand where the Krawtchouk polynomials come

from, as their definition 7 is relatively unilluminating. We have the following Lemma

(see e.g. [118, Lemma 5.3.1]):

Lemma 1. Let ⟨𝑥, 𝑦⟩ denote the usual inner product in (Z/𝑞Z)𝑛. Let 𝜔 = 𝑒
(︁

1
𝑞

)︁
be

a primitive 𝑞th root of unity. Let 𝑥 ∈ F𝑛
𝑞 be a fixed word of weight 𝑖, in other words

|𝑥| = 𝑖. Then, ∑︁
𝑦∈F𝑛

𝑞 ,|𝑦|=𝑘

𝜔⟨𝑥,𝑦⟩ = 𝐾𝑘(𝑖).

Proof of Lemma 1. By the underlying symmetries of Hamming space, we may assume
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without loss that 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑖, 0, 0, . . . , 0), where 𝑥𝑖 ̸= 0. Choose 𝑘 positions

ℎ1, ℎ2, . . . , ℎ𝑘 with 0 < ℎ1 < ℎ2 < · · · < ℎ𝑗 ≤ 𝑖 < ℎ𝑗+1 < · · · < ℎ𝑘 ≤ 𝑛. Let 𝒟 be

the set of all words of weight 𝑘 that have their nonzero coordinates in precisely these

positions. Then, we have

∑︁
𝑦∈𝒟

𝜔⟨𝑥,𝑦⟩ =
∑︁

𝑦ℎ1∈F𝑞∖{0}
· · ·

∑︁
𝑦ℎ𝑘∈F𝑞∖{0}

𝑘∏︁
𝑖=1

𝜔𝑥ℎ𝑖
𝑦ℎ𝑖

=

⎡⎣ 𝑗∏︁
𝑖=1

∑︁
𝑦∈𝐹𝑞∖{0}

𝜔𝑥ℎ𝑖
𝑦

⎤⎦ (𝑞 − 1)𝑘−𝑗

=

[︃
𝑗∏︁

𝑖=1

(︀
𝜔 + 𝜔2 + . . . 𝜔𝑞−1

)︀]︃
(𝑞 − 1)𝑘−𝑗

= (−1)𝑗(𝑞 − 1)𝑘−𝑗.

Since there are
(︀
𝑖
𝑗

)︀(︀
𝑛−𝑖
𝑘−𝑗

)︀
choices for 𝒟, we get the result once we recall Definition 7.

The key role played by the roots of unity should already suggest the Fourier ana-

lytic nature of the linear programming bounds. Let us now develop Fourier analysis

on the abelian group (Z/𝑞Z)𝑛. Once again, all this material is classical. For a reader

who does not want to delve deeper into algebraic aspects such as representation theory

and is more comfortable with analysis, we recommend [107, Ch. 7].

As remarked in Chapter 1, in the abelian case, it suffices to study certain scalar

functions called characters :

Definition 8. Let (𝐺, ·) be a finite abelian group, and let 𝑆1 = {𝑧 ∈ C : |𝑧| = 1} be

the unit circle in the complex plane. A character 𝜒 on 𝐺 is a complex valued function

𝜒 : 𝐺→ 𝑆1 which satisfies

𝜒(𝑎 · 𝑏) = 𝜒(𝑎)𝜒(𝑏).

In other words, it is a group homomorphism from 𝐺 to 𝑆1. The trivial character

(denoted by 𝑒) is given by ∀𝑔 ∈ 𝐺, 𝑒(𝑔) = 1. Our notation here does collide with our

notation 𝑒(𝑧) = 𝑒2𝜋𝑖𝑧, but in practice the usage is unambiguous.
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The astute reader familiar with the DFT but not with characters should already

realize that the DFT basis consisting of complex exponentials is a set of characters

on Z/𝑛Z.

A very important property of characters is that distinct characters are orthogonal.

In order to show this, first we show

Lemma 2. If 𝜒 is a nontrivial character for (𝐺, ·),

∑︁
𝑔∈𝐺

𝜒(𝑔) = 0.

Proof of Lemma 2. As 𝜒 is nontrivial, there exists a 𝑏 with 𝜒(𝑏) ̸= 1. Then,

𝜒(𝑏)
∑︁
𝑔∈𝐺

𝜒(𝑔) =
∑︁
𝑔∈𝐺

𝜒(𝑏)𝜒(𝑔)

=
∑︁
𝑔∈𝐺

𝜒(𝑏 · 𝑔)

=
∑︁
𝑔∈𝐺

𝜒(𝑔),

where the last step follows as 𝑏 · 𝑔 sweeps over all elements of 𝐺 exactly once. Now

as 𝜒(𝑏) ̸= 1, we must have the required
∑︀

𝑔∈𝐺 𝜒(𝑔) = 0.

We may now prove the important orthonormality of characters:

Proposition 1. Let 𝜒, 𝜒′ be two characters. Then ⟨𝜒, 𝜒′⟩ = 1(𝜒 = 𝜒′). Here

⟨𝑎, 𝑏⟩ , 1

|𝐺|
∑︁
𝑔∈𝐺

𝑎(𝑔)𝑏(𝑔).

Proof of Proposition 1. First, if 𝜒 = 𝜒′, then we have

⟨𝜒, 𝜒′⟩ =
1

|𝐺|
∑︁
𝑔∈𝐺

1 = 1,

as required.
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If 𝜒 ̸= 𝜒′, we have

⟨𝜒, 𝜒′⟩ =
1

|𝐺|
∑︁
𝑔∈𝐺

𝜒(𝑔)𝜒′(𝑔)

=
1

|𝐺|
∑︁
𝑔∈𝐺

(𝜒𝜒′−1)(𝑔)

= 0.

Here, we used the fact that the characters themselves form a group (called the dual

group ( ̂︀𝐺, ·)) as is easily verified, and that 𝜒𝜒′−1 is a nontrivial character to which we

can apply Lemma 2.

Already we have some neat consequences, such as | ̂︀𝐺| ≤ |𝐺| due to orthogonality

implying independence and the fact that the dimension of the space of functions over

𝐺 is |𝐺|. In fact, we shall now show:

Theorem 5. For a finite abelian group (𝐺, ·), |𝐺| = | ̂︀𝐺|. In other words, the char-

acters of a finite abelian group form a basis for the vector space of functions over

𝐺.

Before turning to the proof of this nontrivial theorem, we do note that we do not

strictly speaking need this to develop Fourier analysis for something as “concrete” as

(Z/𝑞Z)𝑛. Indeed, the astute and impatient reader may already think: characters on

product groups are just products of characters, and we know characters for Z/𝑞Z from

knowledge of the DFT. More generally, one can invoke the structure theorem for finite

abelian groups which allows one to decompose any such group into a direct product

of cyclic groups, and in fact prove the above Theorem 5 from such a consideration.

However, we believe that with a little more patience more light may be shed.

For example, going back to Chapter 1, we made some remarks about “simultaneous

eigenfunctions for the translation group”. The approach we present now elucidates

this, assuming a basic grasp of linear algebra.

We first prove that commuting unitary operators on a finite dimensional inner

product space are simultaneously diagonalizable:
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Lemma 3. Suppose {𝑇1, . . . , 𝑇𝑘} is a commuting family of unitary operators on the

finite dimensional inner product space 𝑉 ; that is for all 𝑖, 𝑗

𝑇𝑖𝑇𝑗 = 𝑇𝑗𝑇𝑖.

Then 𝑇𝑖 are simultaneously diagonalizable. In other words, there is a basis for 𝑉

consisting of eigenvectors for every 𝑇𝑖, 1 ≤ 𝑖 ≤ 𝑘.

Proof. We shall induct on 𝑘. The case 𝑘 = 1 is simply the spectral theorem. Suppose

Lemma 3 is true for 𝑘 − 1 commuting unitary operators. Applying the spectral

theorem to 𝑇𝑘, we see that

𝑉 = 𝑉𝜆1 ⊕ . . . 𝑉𝜆𝑠 ,

where 𝑉𝜆𝑖
denotes the subspace of all eigenvectors with eigenvalue 𝜆𝑖. We now claim

that each one of 𝑇1, . . . , 𝑇𝑘−1 maps 𝑉𝜆𝑖
to itself. For if 𝑣 ∈ 𝑉𝜆𝑖

, and 1 ≤ 𝑗 ≤ 𝑘 − 1,

then we have

𝑇𝑘𝑇𝑗(𝑣) = 𝑇𝑗𝑇𝑘(𝑣) = 𝑇𝑗(𝜆𝑖𝑣) = 𝜆𝑖𝑇𝑗(𝑣),

and so 𝑇𝑗(𝑣) ∈ 𝑉𝜆𝑖
as needed.

Now, the restrictions of 𝑇1, 𝑇2, . . . , 𝑇𝑘−1 to 𝑉𝜆𝑖
are clearly well defined operators,

and inherit pairwise commuting and the unitary nature. Furthermore, by the in-

duction hypothesis, these are simultaneously diagonalizable. Thus, we get a suitable

basis for each 𝑉𝜆𝑖
that works for 𝑇1, 𝑇2, . . . , 𝑇𝑘. As 𝑉 is a direct sum of the 𝑉𝜆𝑖

, we

are done.

With the above Lemma 3, we may now turn to the proof of Theorem 5.

Proof of Theorem 5. Define “translation” operators on the vector space of complex

valued functions on 𝐺

(𝑇𝑎𝑓)(𝑥) , 𝑓(𝑎 · 𝑥).

𝐺’s abelian nature implies that 𝑇𝑎, 𝑇𝑏 commute. Furthermore, 𝑇𝑎 is clearly unitary,

since 𝑎 · 𝑥 sweeps across 𝐺 when 𝑥 does. Then by Lemma 3 𝑇𝑎 is simultaneously

diagonalizable. Thus, we have a basis of eigenvectors 𝑣𝑏(·), where 𝑏 varies over 𝐺.
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Let 𝑣 be one of these 𝑣𝑏, and we claim that 𝑤(𝑔) , 𝑣(𝑔)
𝑣(1)

is well-defined and also a

character.

First, we need to show that 𝑣(1) ̸= 0. Suppose not. Then

𝑣(𝑎) = 𝑣(𝑎 · 1) = (𝑇𝑎𝑣)(1) = 𝜆𝑎𝑣(1) = 0,

forcing 𝑣(𝑎) = 0 for an arbitrary 𝑎, which is impossible.

Thus 𝑤 is indeed well-defined. We now check that it is indeed a character by

𝑤(𝑎 · 𝑏) =
𝑣(𝑎 · 𝑏)
𝑣(1)

=
𝜆𝑎𝑣(𝑏)

𝑣(1)
= 𝜆𝑎𝜆𝑏 = 𝑤(𝑎)𝑤(𝑏).

This completes the proof of Theorem 5.

Note that the above proof is quite hands-on and “effective”, since it gives an

actual procedure (compute eigenvectors of the translation operators) to obtaining the

characters. As such, the following consequence should be transparent either by the

above discussion, or by the earlier remarks regarding characters on product groups

being products of characters:

Corollary 3. Let 𝜔 = 𝑒
(︁

1
𝑞

)︁
. The characters of ((Z/𝑞Z)𝑛,+) are 𝜒𝑥, where 𝜒𝑥(𝑧) =

𝜔⟨𝑥,𝑧⟩.

Proof of Corollary 3. It is obvious that 𝜒𝑥(𝑧) are characters, since their range is on

the unit circle, and

𝜒𝑥(𝑧1 + 𝑧2) = 𝜔⟨𝑥,𝑧1+𝑧2⟩ = 𝜔⟨𝑥,𝑧1⟩𝜔⟨𝑥,𝑧2⟩ = 𝜒𝑥(𝑧1)𝜒𝑥(𝑧2).

Furthermore, we have one character for each of the elements of (Z/𝑞Z)𝑛, so we are

done by Theorem 5.

We now introduce the notion of a positive definite function.
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Definition 9. Let (𝐺,+) be a finite abelian group, and 𝑓 : 𝐺 → C. 𝑓 is called

positive definite iff for all 𝑁 and 𝑥1, . . . , 𝑥𝑁 ∈ 𝐺, 𝑐1, . . . , 𝑐𝑁 ∈ C,

𝑁∑︁
𝑗,𝑘=1

𝑓(𝑥𝑗 − 𝑥𝑘)𝑐𝑗𝑐𝑘 ≥ 0.

In other words, for all 𝑁 and all “codes” 𝑥1, . . . , 𝑥𝑁 , the matrix 𝐴 given by 𝐴𝑗,𝑘 =

𝑓(𝑥𝑗 − 𝑥𝑘) is a positive definite matrix.

Before developing the theory further, let us look at some simple illustrations and

consequences of Definition 9. For example, the function 𝑓(𝑥) = 1(𝑥 = 0) is a positive

definite function; this simply follows from the fact that the identity is positive definite.

We also have the following simple

Lemma 4. Let 𝑓 be a positive definite function. Then

1. 𝑓(0) ≥ 0,

2. ∀𝑥 ∈ 𝐺, 𝑓(0) ≥ |𝑓(𝑥)|,

3. ∀𝑥 ∈ 𝐺, 𝑓(−𝑥) = 𝑓(𝑥).

Proof of Lemma 4. First take 𝑁 = 1, 𝑥1 = 0, 𝑐1 = 1 to get 𝑓(0) ≥ 0. Next take

𝑁 = 2, 𝑥1 = 0, 𝑥2 = 𝑥, 𝑐1 = 1, 𝑐2 = 𝑐 where 𝑐 is an arbitrary complex number on the

unit circle, to get

𝑐𝑓(−𝑥) + 𝑐𝑓(𝑥) + 2𝑓(0) ≥ 0.

Thus 𝑓(−𝑥) = 𝑓(𝑥) (the third item), and also 2ℜ(𝑐𝑓(𝑥)) ≤ 2𝑓(0). Take 𝑐 proportional

to 𝑓(−𝑥) to get the second item.

It is also easy to show that characters are positive definite, and that positive

definite functions form a cone:

Lemma 5. Let ̂︀𝑔 ∈ ̂︀𝐺 be a character. Then ̂︀𝑔 is positive definite. Also, a nonnegative

linear combination of positive definite functions is positive definite. In other words,

positive definite functions form a cone.
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Proof of Lemma 5. We have

𝑁∑︁
𝑗,𝑘=1

̂︀𝑔(𝑥𝑗 − 𝑥𝑘)𝑐𝑗𝑐𝑘 =
𝑁∑︁

𝑗,𝑘=1

̂︀𝑔(𝑥𝑗)̂︀𝑔(𝑥𝑘)𝑐𝑗𝑐𝑘 =

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑗=1

̂︀𝑔(𝑥𝑗)𝑐𝑗

⃒⃒⃒⃒
⃒
2

≥ 0,

completing the proof of the first statement by the definition of positive definiteness 9.

The second statement is obvious, and follows directly from linearity.

We may now prove a (weak) form of Bochner’s theorem (see e.g. [22] for original,

or an exposition [70, VI.2.7] for the version on the locally compact R/Z.)2 The

“weakness” here refers to the fact that we are working in the technically simple setting

of finite abelian groups.

Theorem 6 (Bochner). Let (𝐺,+) be a finite abelian group, and let 𝑓 : 𝐺→ C have

Fourier expansion

𝑓(𝑥) =
∑︁
̂︀𝑔∈ ̂︀𝐺

𝑎̂︀𝑔̂︀𝑔(𝑥).

Then, 𝑓 is positive definite iff all its Fourier coefficients 𝑎̂︀𝑔 are nonnegative.

Proof of Theorem 6. Let ̂︀ℎ ∈ ̂︀𝐺 be a character. Now take 𝑥1, 𝑥2, . . . , 𝑥𝑁 = 𝐺 (each

element of 𝐺 occuring precisely once), and 𝑐𝑗 = ̂︀ℎ(𝑥𝑗). Applying the definition of

positive definiteness 9, we have

∑︁
̂︀𝑔∈ ̂︀𝐺

𝑎̂︀𝑔∑︁
𝑗,𝑘

̂︀𝑔(𝑥𝑗 − 𝑥𝑘)̂︀ℎ(𝑥𝑗)̂︀ℎ(𝑥𝑘) ≥ 0

⇒
∑︁
̂︀𝑔∈ ̂︀𝐺

𝑎̂︀𝑔∑︁
𝑗,𝑘

̂︀𝑔(𝑥𝑗)̂︀𝑔(𝑥𝑘)̂︀ℎ(𝑥𝑗)̂︀ℎ(𝑥𝑘) ≥ 0

⇒
∑︁
̂︀𝑔∈ ̂︀𝐺

𝑎̂︀𝑔
⃒⃒⃒⃒
⃒∑︁

𝑗

̂︀𝑔(𝑥𝑗)̂︀ℎ(𝑥𝑗)

⃒⃒⃒⃒
⃒
2

≥ 0

⇒ | ̂︀𝐺|𝑎̂︀ℎ ≥ 0

⇒ 𝑎̂︀ℎ ≥ 0,

2It can be argued that these ideas for R/Z should be traced further back to the work of Her-
glotz [62] and independently Riesz [96].
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where we used the orthonormality of characters (Proposition 1). ̂︀ℎ was arbitrary, so

we proved one direction.

We now need to show that if all the Fourier coefficients are nonnegative, 𝑓 is

positive definite. But this is precisely the content of Lemma 5.

Most of the above machinery is not strictly speaking needed for the proof of the

central Delsarte inequalities (2.12). However, it does serve to place them in a broader

Fourier analytic context, and helps reduce the “mystery” of where the inequalities

come from. Let us now prove the Delsarte inequalities.

Proposition 2. Let the Krawtchouk polynomials be defined via (2.11), and let the dis-

tance distribution of a code 𝒞 be given by 𝐴𝑖, defined by (2.10). Then, we have (2.12)

∀0 ≤ 𝑗 ≤ 𝑛,
𝑛∑︁

𝑖=0

𝐴𝑖𝐾𝑗(𝑖) ≥ 0.

Proof of Proposition 2. Let 𝑥1, . . . , 𝑥𝑁 = 𝒞, where each 𝑥𝑖 occurs precisely once for

each element of the code 𝒞. Let 𝑐𝑖 = 1 for all 𝑖. 𝜒𝑥 is positive definite, so
∑︀

𝑥:|𝑥|=𝑗 𝜒𝑥 is

positive definite as well by Lemma 5. The definition of positive definiteness 9, together

with the expression of Krawtchouk polynomials in terms of characters (Lemma 1)

completes the proof. More explicitly, we have

|𝒞|
𝑛∑︁

𝑖=0

𝐴𝑖𝐾𝑗(𝑖) =
𝑛∑︁

𝑖=0

∑︁
(𝑥,𝑦)∈𝒞2,|𝑥−𝑦|=𝑖

⎡⎣ ∑︁
𝑧∈F𝑛

𝑞 ,|𝑧|=𝑘

𝜔⟨𝑥−𝑦,𝑧⟩

⎤⎦
=

∑︁
𝑧∈F𝑛

𝑞 ,|𝑧|=𝑘

⃒⃒⃒⃒
⃒∑︁
𝑥∈𝒞

𝜔⟨𝑥,𝑧⟩

⃒⃒⃒⃒
⃒
2

≥ 0.

Remark 1. The above proof also reveals an interpretation of the Delsarte inequalities.

Consider 𝑓(𝑥) = 1(𝑥 ∈ 𝒞), that is the “characteristic function” of the code. Then,

the Delsarte inequalities state that the sum of the squares of the magnitudes of the

Fourier coefficients of 𝑓 , grouped by Hamming weight 𝑗, are nonnegative. For the
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reader familiar with Boolean Fourier analysis in the spirit of [89], this provides a link

to the Delsarte inequalities.

Remark 2. The astute reader may have noticed that nothing in our above discussion

really sheds light as to why the Krawtchouk polynomials are actually polynomials,

though we did verify this by direct computation. As our direct computation in the proof

of Lemma 1 suggests, one may suspect that the polynomial behavior arises somehow

from the combinatorics (in particular the regularity) of the underlying Hamming space.

This guess is indeed correct, and there is a rich theory of association schemes that

studies this further. Delsarte’s original work [35] is written in that framework. We

also refer the interested reader to the expository paper [36]. Although we could provide

an exposition here as well, the theory of association schemes is very tangential to our

focus here, and we feel that it would not shed much light on the subject matter at

hand.

We shall need a few properties of Krawtchouk polynomials for the subsequent

development in Hamming space. The above remark illustrates how one may develop

the theory systematically. Here, we shall content ourselves with a more “ad-hoc”

development.

First, we obtain a closed form for the generating function of Krawtchouk polyno-

mials (see e.g [118, 1.2.3]).

Lemma 6. Recall (7)

𝐾𝑘(𝑥) =
𝑘∑︁

𝑗=0

(−1)𝑗(𝑞 − 1)𝑘−𝑗

(︂
𝑥

𝑗

)︂(︂
𝑛− 𝑥

𝑘 − 𝑗

)︂
.

Then we have
∞∑︁
𝑖=0

𝐾𝑖(𝑥)𝑧𝑖 = (1 + (𝑞 − 1)𝑧)𝑛−𝑥(1 − 𝑧)𝑥. (2.13)

Proof of Lemma 6. Compare the coefficient of 𝑧𝑘 on both sides of (2.13). The left

hand side has 𝐾𝑘(𝑥), while on the right hand side we may use the binomial theorem

to get a coefficient of

(−1)𝑗(𝑞 − 1)𝑘−𝑗

(︂
𝑥

𝑗

)︂(︂
𝑛− 𝑥

𝑘 − 𝑗

)︂
,
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as required.

Next, we obtain an orthogonality relation for Krawtchouk polynomials (see e.g. [36,

Thm 1]).

Lemma 7. We have
𝑛∑︁

𝑖=1

𝐾𝑖(𝑗) = 𝑞𝑛 1(𝑗 = 0) − 1. (2.14)

Proof of Lemma 7. It is obvious by the definition of Krawtchouk polynomials 7 that

𝐾0(𝑗) = 1, so we may rewrite the desired (2.14) as

𝑛∑︁
𝑖=0

𝐾𝑖(𝑗) = 𝑞𝑛 1(𝑗 = 0).

Let 𝑥 be a fixed vector of Hamming weight 𝑗. We may use the expression of

Krawtchouk polynomials in terms of characters (Lemma 1) to obtain

𝑛∑︁
𝑖=0

𝐾𝑖(𝑗) =
𝑛∑︁

𝑖=0

∑︁
𝑦∈F𝑛

𝑞 ,|𝑦|=𝑖

𝜔⟨𝑥,𝑦⟩

=
∑︁
𝑦∈F𝑛

𝑞

𝜔⟨𝑥,𝑦⟩

= 𝑞𝑛 1(𝑗 = 0),

where for the last line we used a basic property of characters (Lemma 2).

2.3.2 Proof of Theorem 1

With these inequalities in hand, we may turn to the proof of Theorem 1.

Proof of Theorem 1. We may first dispose of trivialities 𝑑 = 𝑛 (the full space), and

𝑑 = 0 (a single point). By (2.12), we see that 𝑁𝑞(𝑛, 𝑑)− 1 is less than or equal to the
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solution of the following LP

max
𝐴𝑖

𝑛∑︁
𝑖=1

𝐴𝑖 (2.15)

s.t. 𝐴𝑖 = 0 ∀𝑑 < 𝑖 ≤ 𝑛

𝐴𝑖 ≥ 0 ∀1 ≤ 𝑖 ≤ 𝑛

𝑛∑︁
𝑖=1

𝐴𝑖𝐾𝑗(𝑖) ≥ −𝐾𝑗(0) ∀1 ≤ 𝑗 ≤ 𝑛.

The subtraction of 1 is simply due to 𝐴0 = 1, and hence can be removed from the

LP.

By weak duality, the primal LP given by (2.15) is upper bounded by the solution

of the dual LP

min
𝑝𝑖

𝑛∑︁
𝑖=1

𝐾𝑖(0)𝑝𝑖 (2.16)

s.t. 𝑝𝑖 ≥ 0 ∀1 ≤ 𝑖 ≤ 𝑛

𝑛∑︁
𝑖=1

𝑝𝑖𝐾𝑖(𝑗) ≤ −1 ∀1 ≤ 𝑗 ≤ 𝑑.

The goal now is to construct dual variables 𝑝𝑖 that yield the optimum cost 𝑞𝑑 − 1

under the assumed constraints on 𝑑, and check their satisfiability. The way we will

achieve this is by making the 𝑝𝑖 satisfy a linear recurrence of order 𝑛 − 𝑑 + 1 with

initial conditions

𝑝𝑖 = 0 ∀1 ≤ 𝑖 ≤ 𝑛− 𝑑

𝑝𝑛−𝑑+1 =
1

(𝑞 − 1)𝑛−𝑑
.

Note that for 𝑑 = 1, this completely specifies the dual variables; with no need to

define the recurrence relation. For the 𝑛 − 𝑞 + 1 ≤ 𝑑 ≤ 𝑛 − 1 case, one considers a

recurrence relation with characteristic polynomial (𝑧+ 1
𝑞−1

)𝑛−𝑑(𝑧−1). Explicitly, this
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yields the recurrence

𝑝𝑘 =
𝑛−𝑑+1∑︁
𝑖=1

𝑎𝑖𝑝𝑘−𝑖

where the weights 𝑎𝑖 are

𝑎𝑖 =

(︀
𝑛−𝑑
𝑖−1

)︀
(𝑞 − 1)𝑖−1

−
(︀
𝑛−𝑑
𝑖

)︀
(𝑞 − 1)𝑖

(2.17)

and thus satisfy
∑︀𝑛−𝑑+1

𝑖=1 𝑎𝑖 = 1 by telescoping.

More importantly for our proof is the fact that 𝑎𝑖 ≥ 0 ∀𝑖, which follows from (2.17),

crucially using the assumption that 𝑛−𝑞+1 ≤ 𝑑. This yields immediately by induction

that 𝑝𝑖 ≥ 0 ∀𝑖.

By the general theory of linear recurrences, we know that

𝑝𝑖 = 𝑎+

(︃
𝑛−𝑑−1∑︁
𝑗=0

𝑏𝑗𝑖
𝑗

)︃(︂
1

1 − 𝑞

)︂𝑖

for some constants 𝑎, 𝑏𝑗 (depending on 𝑛, 𝑑, 𝑞 but independent of 𝑖). It will be of con-

venience to switch to the falling factorial basis (in order to use Newton interpolation),

and reindex by defining 𝑞𝑖 = 𝑝𝑖+1, yielding

𝑞𝑖 = 𝑐+

(︃
𝑛−𝑑−1∑︁
𝑗=0

𝑑𝑗

(︂
𝑖

𝑗

)︂)︃(︂
1

1 − 𝑞

)︂𝑖

for some constants 𝑐, 𝑑𝑗. The constants 𝑐, 𝑑𝑗 are determined by have the specified

boundary conditions

𝑞0 = 𝑞1 = · · · = 𝑞𝑛−𝑑−1 = 0, 𝑞𝑛−𝑑 =
1

(𝑞 − 1)𝑛−𝑑
.

Transposing and using the fact that ∆𝑘[(1 − 𝑞)𝑛](0) = (−𝑞)𝑘 along with ∆𝑘[
(︀
𝑛
𝑗

)︀
] =
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(︀
𝑛

𝑗−𝑘

)︀
, one gets

𝑑𝑖 = −𝑐(−𝑞)𝑖 ∀1 ≤ 𝑖 ≤ 𝑛− 𝑑− 1.

Using 𝑞0 = 0, we get 𝑑0 = −𝑐, and hence

𝑞𝑖 = 𝑐

[︃
1 −

(︃
𝑛−𝑑−1∑︁
𝑗=0

(−𝑞)𝑗
(︂
𝑖

𝑗

)︂)︃
1

(1 − 𝑞)𝑖

]︃
.

From 𝑞𝑛−𝑑 = 1
(𝑞−1)𝑛−𝑑 and the binomial theorem, we can finally determine 𝑐 = 1

𝑞𝑛−𝑑 ,

yielding the explicit formula for the dual variables

𝑝𝑖 =
1

𝑞𝑛−𝑑

[︃
1 −

(︃
𝑛−𝑑−1∑︁
𝑗=0

(︂
𝑖− 1

𝑗

)︂
(−𝑞)𝑗

)︃
1

(1 − 𝑞)𝑖−1

]︃
(2.18)

Nonnegativity of the 𝑝𝑖 has been verified above, so it remains to compute the dual

objective value and verify feasibility. For this purpose, we prove the following

Lemma 8.

𝑛∑︁
𝑖=1

(︂
𝑖− 1

𝑠

)︂
𝐾𝑖(𝑗)

1

(1 − 𝑞)𝑖
= (−1)𝑠+1 ∀0 ≤ 𝑠 ≤ 𝑛− 𝑗 − 1. (2.19)

Proof of Lemma 8. The proof is by induction on 𝑠.

For 𝑠 = 0, we may write (2.19) as

𝑛∑︁
𝑖=1

𝐾𝑖(𝑗)
1

(1 − 𝑞)𝑖
= −1

or equivalently
∞∑︁
𝑖=0

𝐾𝑖(𝑗)
1

(1 − 𝑞)𝑖
= 0.

But this follows immediately from the generating function governing Krawtchouk

polynomials (2.13). Now suppose (2.19) holds for 𝑠 ≤ 𝑘, and we wish to prove it for

𝑠 = 𝑘 + 1 where 𝑘 + 1 ≤ 𝑛 − 𝑗. Using
(︀
𝑖−1
𝑘+1

)︀
=
(︀

𝑖
𝑘+1

)︀
−
(︀
𝑖−1
𝑘

)︀
, we reduce to showing
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that
𝑛∑︁

𝑖=1

(︂
𝑖

𝑘 + 1

)︂
𝐾𝑖(𝑗)

1

(1 − 𝑞)𝑖
= 0

or equivalently
∞∑︁
𝑖=0

(︂
𝑖

𝑘 + 1

)︂
𝐾𝑖(𝑗)

1

(1 − 𝑞)𝑖
= 0 (2.20)

Observe that as 𝑘 + 1 ≤ 𝑛− 𝑗,
(︀

𝑖
𝑘+1

)︀
is a polynomial in 𝑖 of degree at most 𝑛− 𝑗.

Thus, taking 𝑥 = 𝑗, differentiating (2.13) at most 𝑛− 𝑗 times, and using the fact that
1

1−𝑞
is a root of order 𝑛− 𝑗, we get (2.20) as desired.

We now turn to checking the dual LP’s objective value for 𝑝𝑖 governed by (2.18).

First, note that

𝑛∑︁
𝑖=1

𝐾𝑖(𝑗) =
𝑛∑︁

𝑖=0

𝐾𝑖(𝑗)𝐾0(𝑖) − 1 (2.21)

= 𝑞𝑛 1(𝑗 = 0) − 1 (2.22)

by an orthogonality relation of Krawtchouk polynomials (Lemma 7). Using (2.21)

along with Lemma 2.19, we get

𝑛∑︁
𝑖=1

𝑝𝑖𝐾𝑖(0) =
1

𝑞𝑛−𝑑

[︃
𝑞𝑛 − 1 + (1 − 𝑞)

(︃
𝑛−𝑑−1∑︁
𝑗=0

𝑞𝑗

)︃]︃

= 𝑞𝑑 − 1,

as desired.

Turning to the verification of dual feasibility, we have

𝑛∑︁
𝑖=1

𝑝𝑖𝐾𝑖(𝑗) =
1

𝑞𝑛−𝑑

[︃
−1 + (1 − 𝑞)

(︃
𝑛−𝑑−1∑︁
𝑗=0

𝑞𝑗

)︃]︃

= −1 ∀1 ≤ 𝑗 ≤ 𝑑,

as required.

It is obvious that subcubes achieve this objective value, thus completing the proof.
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Note that this is an example of a sharp bound on the value of 𝑐*(𝑓, 𝑞𝑛) for specific

choices of 𝑓 by the discussion in Section 2.1. In general, it seems like the LP bounds

tend to yield richer information for the problem of 𝑒*(𝑓, 𝑐); at the very least we know

of many more examples where the LP bounds are sharp for 𝑒*(𝑓, 𝑐). Apart from

Theorem 1 and the work of [124, 49], where sharp answers are given for specific

cases of the Johnson graph and for all cases of their 𝑞-analog, namely the Grassman

graph respectively, we do not know of any other interesting families of finite distance-

regular graphs where LP bounds yield sharp information for the isodiametric problem,

although we do think this is highly plausible.

The remainder of this chapter will focus on some 𝑒*(𝑓, 𝑐) questions. Before turn-

ing to specific choices of 𝑓, 𝑐, we note that one can without loss restrict study to

anticodes that are down-set (for any 𝑞) and right-compressed (when 𝑞 = 2) as long as

𝑓 is a monotone potential. The arguments here are classical, with right compression

operations going back to Erdős-Ko-Rado [42] and pushing down arguments that are

essentially due to Kleitman [71].

It is convenient to define the notions of slice and projection of a set for this

purpose, as in [6]. We also define a natural lexicographic order on 𝒳 𝑛
𝑞 .

Definition 10. Let 𝒞 ⊆ F𝑛
𝑞 , and let 𝒥 ⊆ [𝑛]. For 𝑥 ∈ F𝑛

𝑞 , denote by 𝑥𝐽 the sub-

sequence of 𝑥 obtained by deleting components 𝑥𝑡 for 𝑡 /∈ 𝒥 . We then denote the

slice

𝒞𝒥 (𝑥[𝑛]∖𝒥 ) , {𝑥𝒥 ∈ F𝒥
𝑞 : 𝑥 ∈ 𝒞} for 𝑥[𝑛]∖𝒥 ∈ F[𝑛]∖𝒥

𝑞 .

We then denote the projection

𝒞𝒥 ,
⋃︁

𝑥[𝑛]∖𝒥∈F[𝑛]∖𝒥
𝑞

𝒞𝒥 (𝑥[𝑛]∖𝒥 ).

We also denote by L a natural lexicographic order generated by 0 ≤ 1 · · · ≤ 𝑞 − 1 on

F𝑛
𝑞 , with the least significant positions towards the right end. We denote the set of the

lexicographically first 𝑚 elements in F𝒥
𝑞 by L(F𝒥

𝑞 ,𝑚), and call this a lex-set.
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With these notations in hand, we may readily define the pushing down operations

as follows, again following [6].

Definition 11. The pushing down operation with respect to the order L, a subset 𝒥

of indices, and an anticode 𝒞 is given by

𝐷𝒥 (L, 𝒞) ,
⋃︁

𝑥[𝑛]∖𝒥∈𝒞[𝑛]∖𝒥

{𝑦 : 𝑦[𝑛]∖𝒥 = 𝑥[𝑛]∖𝒥 and 𝑦𝒥 ∈ L(F𝒥
𝑞 , |𝒞(𝑥[𝑛]∖𝒥 )|)}

Then 𝒞 is said to be down-set if 𝐷{𝑖}(L, 𝒞) = 𝒞 for all 1 ≤ 𝑖 ≤ 𝑛.

In the special case of 𝑞 = 2, we also define the right compression operations as

follows.

Definition 12. For any 𝒞 ∈ F𝑛
2 , any 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ 𝒞, and 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 we

define the right compressing operators 𝑆𝑖,𝑗 by

𝑆𝑖,𝑗(𝑐) ,⎧⎪⎨⎪⎩(𝑐1, . . . , 𝑐𝑖−1, 0, 𝑐𝑖+1, . . . , 𝑐𝑗−1, 1, 𝑐𝑗+1, . . . , 𝑐𝑛), if not in 𝒞 and 𝑐𝑗 = 0, 𝑐𝑖 = 1

𝑐 otherwise.

Also, let

𝑆𝑖,𝑗(𝒞) , {𝑆𝑖,𝑗(𝑐) : 𝑐 ∈ 𝒞}.

Then 𝒞 is said to be right-compressed if 𝑆𝑖,𝑗(𝒞) = 𝒞 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

With these definitions 11, 12, we may prove the following

Proposition 3. Let 𝑓 be a monotonically nondecreasing potential function, that is

𝑓 ∈ ℱ or in other words 𝑓(𝑖) ≤ 𝑓(𝑖 + 1) ∀0 ≤ 𝑖 ≤ 𝑛 − 1. Let a cardinality 𝑐 with

0 ≤ 𝑐 ≤ 𝑞𝑛 be given. Then there exists a down-set 𝒞 ⊆ F𝑛
𝑞 such that for any other set

𝒞 ′ of the same cardinality, we have

𝐸𝑓 (𝒞) ≤ 𝐸𝑓 (𝒞 ′).
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Furthermore, if 𝑞 = 2, we may take 𝒞 to be simultaneously down-set and right-

compressed.

Proof of Proposition 3. Suppose 𝒞0 minimizes 𝐸𝑓 (𝒜) over all anticodes 𝒜 with |𝒜| =

𝑐. Consider the sets 𝒞𝑖 = 𝐷{𝑖 (mod 𝑛)+1}(L, 𝒞𝑖−1) defined inductively for 𝑖 ≥ 1. It is

clear that this process stabilizes eventually, and moreover that it does not change the

cardinality. For example, consider a bounded potential

𝐹 (𝒞) ,
∑︁
𝑐∈𝒞

𝑐𝑞, (2.23)

where 𝑐𝑞 =
∑︀𝑛−1

𝑖=0 𝑐𝑛−𝑖𝑞
𝑖. This potential clearly can not increase with 𝑖, so it eventually

stabilizes. Once the potential stabilizes, it is clear that any further iterations do not

change the set. Let us denote this stabilized down-set by 𝒟. We argue now that

𝐸𝑓 (𝒞0) ≥ 𝐸𝑓 (𝒟). Clearly it suffices by symmetry to show that 𝐸𝑓 (𝐷{𝑛}(L, 𝒞)) ≤

𝐸𝑓 (𝒞) for any 𝒞. But this is easy to see. Consider two arbitrary slices of the anticode

𝒜 = 𝑥[𝑛]∖{𝑛} × 𝒞{𝑛}(𝑥[𝑛]∖{𝑛}),

ℬ = 𝑦[𝑛]∖{𝑛} × 𝒞{𝑛}(𝑦[𝑛]∖{𝑛}),

and note that the action of 𝐷 on 𝒜,ℬ can not increase the number of pairs of code-

words of 𝒜,ℬ of Hamming distance ≥ 𝑖 for any 0 ≤ 𝑖 ≤ 𝑛. 𝐸𝑓 (𝒞0) ≥ 𝐸𝑓 (𝒟) then

follows by the trivial spanning set characterization of ℱ established in Lemma 10.

Taking 𝒞 = 𝒟 completes the proof for 𝑞 ̸= 2.

Now suppose 𝑞 = 2. Let 𝒟0 = 𝒟, 𝒟𝑖 = 𝑆𝑘𝑙(𝑖)(𝒟𝑖−1) defined inductively for

𝑖 ≥ 1. Here, 𝑘𝑙(𝑖) denotes some periodically repeating indexing of all (𝑘, 𝑙) pairs from

1 ≤ 𝑘 < 𝑙 ≤ 𝑛. Once again, it is clear that this process eventually stabilizes and

that it does not change the cardinality; indeed the same potential (2.23) works as a

certificate. Let 𝒞 denote the stabilized right-compressed set. It remains to check that

𝒞 is also down-set and that the number of pairs of codewords with Hamming distance

≥ 𝑖 does not increase for any 0 ≤ 𝑖 ≤ 𝑛. Again by symmetry it suffices to study
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𝑆𝑛−1,𝑛. Consider two arbitrary slices of the anticode

𝒜 = 𝑥[𝑛]∖{𝑛,𝑛−1} × 𝒞{𝑛,𝑛−1}(𝑥
[𝑛]∖{𝑛,𝑛−1}),

ℬ = 𝑦[𝑛]∖{𝑛,𝑛−1} × 𝒞{𝑛,𝑛−1}(𝑦
[𝑛]∖{𝑛,𝑛−1}),

and note by a case by case analysis of the bits in positions {𝑛−1, 𝑛} of 𝒜 that 𝑆𝑛−1,𝑛

preserves the down-set property. Moreover, by looking at both 𝒜,ℬ, it is clear that

the number of pairs of codewords with Hamming distance past a threshold does not

increase. This completes the proof for 𝑞 = 2.

We remark that the powerful pushing-pulling operations that serve a crucial role

in establishing the complete diametric theorems of [6, 7] in general modify the cardi-

nality of the anticode, unlike the classical compression and pushing down operations.

Pushing-pulling thus seem better suited to 𝑐*(𝑓, 𝑒) questions or generalizations with

a non-uniform ground measure such as a Bernoulli weighted case (see e.g. [46] and

references therein). As our focus here is on 𝑒*(𝑓, 𝑐) questions, we do not examine this

further.

2.4 Universal optimality of some subcubes

Before we turn to the proof of Theorem 2, it is natural to wonder why we focus

on subcubes. For example, we know by the diametric theorem [7] that Hamming

balls or nontrivial Cartesian products of Hamming balls and subcubes are optimal

anticodes in the diametric sense, with pure subcubes addressing only a small range

of the diametric problem.

The reason for this is because of our focus on the phenomenon of universal opti-

mality. Consider a potential function 𝑓(𝑥) = −
(︀
𝑛−𝑥
𝑛−1

)︀
. −𝑓 is completely monotonic,

and the problem of 𝑒*(𝑓, 𝑐) is nothing but the edge-isoperimetric problem in Hamming

space. In the binary case this was first solved by Harper [60] and in the non-binary

case by Lindsey [76]. In either case, the answer is given by taking the first 𝑐 vertices

in lexicographic order in Hamming space. Furthermore, this answer is unique up to
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symmetry, specifically the group of (Hamming) distance preserving automorphisms.

Thus, for the problem of universal optimality, where the class of functions includes

one that minimizes the edge boundary (such as completely monotonic functions or

monotonic functions), we can focus on such lex-sets, which we can denote formally

using our notation as L(F𝑛
𝑞 ,𝑚).

Of course, this does not address why we focus on the further specialization to

subcubes. Our restricted focus on subcubes comes from a limitation of the LP bounds

observed in [29, Prop. 29]. Suppose our set of potential functions contains 𝑛 +

1 linearly independent potential functions; this is true of the cones of completely

monotonic and monotonic functions. Then by [29, Prop. 29] we know that 𝒞 ∖ {𝑐}

must have the same distance distribution for all 𝑐 ∈ 𝒞. If 𝒞 is a lex-set, this can

only happen when 𝒞 is a subcube. To see this, consider 𝑐1 = 0, 𝑐2 = 𝑚 where 𝑚 is

the maximum element in 𝒞 in lexicographic order, and look at how many neighbors

each of them has at Hamming distance 1. The only way these equate is if 𝑐2 is the

maximum element of a subcube in lexicographic order. It would be interesting if one

could get around this limitation (for example, using semidefinite programming (SDP)

bounds of some constant order [102, 53]) and prove an analog of (2.7) for cardinality

(3/8)2𝑛, or other candidate cardinalities outlined later in this chapter, such as the

presumably easier Conjecture 1 which asks the question for (1/8)2𝑛, (1/16)2𝑛.

We now turn to the proof of Theorem 2. With a good exact LP solver that sup-

ports rational arithmetic (we used [54], which incorporates exact rational LP support

from [55]) and a reasonable ability to identify sequences, for instance by looking at

finite differences, it is possible to “eye-ball” families of dual certificates of optimality

and prove Theorem 2. However, by stepping back and taking a more conceptual view,

one can get a better feel for what is happening. Accordingly, the proof we give here

uses slightly more machinery about the LP bound, most of which can be found in [29].

Following [29], we use the term quasicode for a feasible point in the Delsarte

LP [29, Defn 6].

Definition 13. A quasicode a of length 𝑛 and size 𝑁 over F𝑞 is a real column vector
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(𝐴0, 𝐴1, . . . , 𝐴𝑛) satisfying the Delsarte inequalities (2.12). Explicitly, we have

a ≥ 0, 𝐾a ≥ 0,
𝑛∑︁

𝑖=0

𝐴𝑖 = 𝑁, and 𝐴0 = 1.

Here 𝐾 is an (𝑛+ 1) × (𝑛+ 1) matrix with (𝑖, 𝑗) entry 𝐾𝑖(𝑗) for 0 ≤ 𝑖, 𝑗 ≤ 𝑛. Also,

a ≥ 0 means coordinate wise inequality.

We let |a| = 𝑁 denote the size of the quasicode, and define the dual of a quasicode

to be the quasicode

a⊥ ,
1

|a|
𝐾a.

If 𝒞 ∈ 𝐹 𝑛
𝑞 is a code, its distance distribution a is a quasicode with |a| = |𝒞|. Also,

if 𝒞 is a linear code, its dual 𝒞⊥ has distance distribution a⊥.

As we are studying subcubes, we first prove that the dual of a subcube is a

subcube.

Lemma 9. Let a = (𝐴0, . . . , 𝐴𝑛) where 𝐴𝑖 =
(︀
𝑑
𝑖

)︀
(𝑞 − 1)𝑖. Then

a⊥ = (𝐴⊥
0 , . . . , 𝐴

⊥
𝑛 ), 𝐴⊥

𝑖 =

(︂
𝑛− 𝑑

𝑖

)︂
(𝑞 − 1)𝑖.

Proof of Lemma 9. Suppose F𝑞 is a field. There the dual of 𝒞𝑞,𝑑 is 𝒞𝑞,𝑛−𝑑; this follows

from the orthogonal direct sum decomposition F𝑛
𝑞 = F𝑑

𝑞 ⊕ F𝑛−𝑑
𝑞 with F𝑑

𝑞 ⊥ F𝑛−𝑑
𝑞 .

Moreover, the distance distribution a of 𝒞𝑞,𝑑 is (𝐴0, . . . , 𝐴𝑛) with 𝐴𝑖 =
(︀
𝑑
𝑖

)︀
(𝑞 − 1)𝑖.

Now if 𝑞 is not a prime power, we are still fine since the dual distance distribution

of a subcube is a rational function of finite degree in 𝑞 given by some combination of

Krawtchouk polynomials, and we have an infinite number of 𝑞 where the expressions

agree. Alternatively, one may do a direct computation.

We now turn to examining the cone of monotonically increasing functions ℱ , and

provide a spanning set for it.

Lemma 10. ℱ is the nonnegative span of 𝑓0, 𝑓1, . . . , 𝑓𝑛 where 𝑓𝑗(𝑥) = 1(𝑥 ≥ 𝑗).

Proof of Lemma 10. 𝑓𝑗 are obviously monotonically increasing. Moreover, any mono-
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tonically increasing 𝑓 may be written as

𝑓(𝑥) = 𝑓(0)𝑓0(𝑥) +
𝑛∑︁

𝑗=1

(𝑓(𝑗) − 𝑓(𝑗 − 1))𝑓𝑗(𝑥).

We note that the analogous characterization for the cone of completely monotonic

functions 𝒢 is already provided by [29, Lemma 4].

A slightly more delicate issue is what happens to ℱ under duality. 𝒢 behaves very

well, and turns out to be invariant under duality [29, Lemma 10]. ℱ is unfortunately

not invariant under duality. In order to get useful information about the dual of ℱ ,

it is helpful to develop some recurrence relations for Krawtchouk polynomials:

Lemma 11.

𝐾𝑗(𝑖;𝑛, 𝑞) = 𝐾𝑗(𝑖− 1;𝑛− 1, 𝑞) −𝐾𝑗−1(𝑖− 1;𝑛− 1, 𝑞). (2.24a)

𝐾𝑗(𝑖;𝑛, 𝑞) = 𝐾𝑗(𝑖;𝑛− 1, 𝑞) + (𝑞 − 1)𝐾𝑗−1(𝑖;𝑛− 1, 𝑞). (2.24b)

Proof of Lemma 11. Basically (2.24) follows from Definition 7 by applying Pascal’s

rule in two different ways. We note that (2.24a) is widely known in coding theory

(see e.g [118, 1.2.15]).

Explicitly, we have

𝐾𝑗(𝑖;𝑛, 𝑞) =

𝑗∑︁
𝑘=0

(−1)𝑘(𝑞 − 1)𝑗−𝑘

(︂
𝑖

𝑘

)︂(︂
𝑛− 𝑖

𝑗 − 𝑘

)︂

=

𝑗∑︁
𝑘=0

(−1)𝑘(𝑞 − 1)𝑗−𝑘

(︂(︂
𝑖− 1

𝑘

)︂
+

(︂
𝑖− 1

𝑘 − 1

)︂)︂(︂
𝑛− 𝑖

𝑗 − 𝑘

)︂

=

𝑗∑︁
𝑘=0

(−1)𝑘(𝑞 − 1)𝑗−𝑘

(︂
𝑖− 1

𝑘

)︂(︂
(𝑛− 1) − (𝑖− 1)

𝑗 − 𝑘

)︂

−
𝑗∑︁

𝑘=0

(−1)𝑘−1(𝑞 − 1)(𝑗−1)−(𝑘−1)

(︂
𝑖− 1

𝑘 − 1

)︂(︂
(𝑛− 1) − (𝑖− 1)

(𝑗 − 1) − (𝑘 − 1)

)︂
= 𝐾𝑗(𝑖− 1;𝑛− 1, 𝑞) −𝐾𝑗−1(𝑖− 1;𝑛− 1, 𝑞).
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This proves (2.24a).

Using Pascal’s rule on the other binomial coefficient in the expansion, we have

𝐾𝑗(𝑖;𝑛, 𝑞) =

𝑗∑︁
𝑘=0

(−1)𝑘(𝑞 − 1)𝑗−𝑘

(︂
𝑖

𝑘

)︂(︂
𝑛− 𝑖

𝑗 − 𝑘

)︂

=

𝑗∑︁
𝑘=0

(−1)𝑘(𝑞 − 1)𝑗−𝑘

(︂
𝑖

𝑘

)︂(︂(︂
(𝑛− 1) − 𝑖

𝑗 − 𝑘

)︂
+

(︂
(𝑛− 1) − 𝑖

(𝑗 − 1) − 𝑘

)︂)︂
= 𝐾𝑗(𝑖;𝑛− 1, 𝑞) + (𝑞 − 1)𝐾𝑗−1(𝑖;𝑛− 1, 𝑞).

This proves (2.24b).

With the recurrence relation (2.24a) in hand, we may characterize the dual of ℱ

as follows.

Lemma 12. Let f𝑗 denote the column vector (of length 𝑛+1) corresponding to 𝑓𝑗(𝑥) =

1(𝑥 ≥ 𝑗), where 0 ≤ 𝑗 ≤ 𝑛. Suppose also that 𝑛 > 1. Then,

𝐾𝑡f𝑗 =(︃
𝑛∑︁

𝑘=𝑗

(︂
𝑛

𝑘

)︂
(𝑞 − 1)𝑘,−𝐾𝑗−1(0;𝑛− 1),−𝐾𝑗−1(1;𝑛− 1), . . . ,−𝐾𝑗−1(𝑛− 1;𝑛− 1)

)︃
.

We denote the set of functions lying in the nonnegative span of 𝐾𝑡f𝑗 the dual cone of

the cone of monotonic functions ℱ . Symbolically, we denote this cone by ℱ⊥.

Proof of Lemma 12. If 𝑖 = 0, we get

𝑛∑︁
𝑘=𝑗

𝐾𝑘(0) =
𝑛∑︁

𝑘=𝑗

(︂
𝑛

𝑘

)︂
(𝑞 − 1)𝑘.

If 𝑖 > 0, we have

𝑛∑︁
𝑘=𝑗

𝐾𝑘(𝑖) = −
𝑗−1∑︁
𝑘=0

𝐾𝑘(𝑖)

= −𝐾𝑗−1(𝑖− 1;𝑛− 1, 𝑞),
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where we used orthogonality followed by telescoping (2.24a).

There are a number of essentially equivalent ways of proceeding with the proof

of Theorem 2, which differ chiefly in how one views dual certificates of optimality in

the LP. For example, in the proof of Theorem 1 we worked explicitly with the dual

variables 𝑝𝑖. A more conceptually satisfying approach that we shall adopt now is to

use the idea of positive definite functions. Specifically we shall use [29, Prop 5].

The construction of dual certificates shall rest on two key inequalities involving

Krawtchouk polynomials. The first of these holds for general reasons. Our proof of

the second uses (2.24b) to fuel an induction argument.

Lemma 13. Suppose 0 ≤ 𝑖, 𝑗 ≤ 𝑛. Then we have the following inequalities involving

Krawtchouk polynomials

∀𝑞 ≥ 2 𝐾𝑗(0) ≥ 𝐾𝑗(𝑖). (2.25)

If 𝑞 > 2, we have

𝑞 − 1

𝑞
𝐾𝑗(1) +

1

𝑞
𝐾𝑗(0) +

(−1)𝑖(𝐾𝑗(0) −𝐾𝑗(1))

𝑞(𝑞 − 1)𝑖−1
≥ 𝐾𝑗(𝑖). (2.26)

Proof of Lemma 13. By positive-definiteness of Krawtchouk polynomials, we imme-

diately conclude (2.25).

For (2.26), we shall induct on 𝑛 and use (2.24b) to do the induction step. The

base case 𝑛 = 1 is trivial since we have equality in (2.26) for 𝑖 = 0, 1 regardless of 𝑛.

We also note that for any 𝑛 the case 𝑗 = 0 is trivial as it simply asserts 1 ≥ 1.

Using

𝐾𝑗(0) =

(︂
𝑛

𝑗

)︂
(𝑞 − 1)𝑗

and

𝐾𝑗(1) =

(︂
𝑛

𝑗

)︂
(𝑞 − 1)𝑗 − 𝑞(𝑞 − 1)𝑗−1

(︂
𝑛− 1

𝑗 − 1

)︂
we may rewrite (2.26) as

𝐾𝑗(𝑖;𝑛) ≤
(︂
𝑛− 1

𝑗

)︂
(𝑞 − 1)𝑗 + (−1)𝑖(𝑞 − 1)𝑗−𝑖

(︂
𝑛− 1

𝑗 − 1

)︂
. (2.27)
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Now suppose (2.27) is true for 𝑛 − 1 with 𝑛 − 1 ≥ 1. We wish to establish it for

0 ≤ 𝑖, 𝑗 ≤ 𝑛. If 𝑗 = 𝑛 we have equality in (2.27) since 𝐾𝑛(𝑖;𝑛) = (−1)𝑖(𝑞 − 1)𝑛−𝑖. If

0 < 𝑖, 𝑗 ≤ 𝑛− 1, we may use the induction hypothesis to obtain

𝐾𝑗(𝑖;𝑛− 1) ≤
(︂
𝑛− 2

𝑗

)︂
(𝑞 − 1)𝑗 + (−1)𝑖(𝑞 − 1)𝑗−𝑖

(︂
𝑛− 2

𝑗 − 1

)︂
, (2.28)

(𝑞 − 1)𝐾𝑗−1(𝑖;𝑛− 1) ≤
(︂
𝑛− 2

𝑗 − 1

)︂
(𝑞 − 1)𝑗 + (−1)𝑖(𝑞 − 1)𝑗−𝑖

(︂
𝑛− 2

𝑗 − 2

)︂
. (2.29)

Adding (2.28) and (2.29) to each other and using (2.24b) we get

𝐾𝑗(𝑖;𝑛)

≤
(︂(︂

𝑛− 2

𝑗 − 1

)︂
+

(︂
𝑛− 2

𝑗

)︂)︂
(𝑞 − 1)𝑗 + (−1)𝑖(𝑞 − 1)𝑗−𝑖

(︂(︂
𝑛− 2

𝑗 − 1

)︂
+

(︂
𝑛− 2

𝑗 − 2

)︂)︂
=

(︂
𝑛− 1

𝑗

)︂
(𝑞 − 1)𝑗 + (−1)𝑖(𝑞 − 1)𝑗−𝑖

(︂
𝑛− 1

𝑗 − 1

)︂
,

thereby proving the induction step as long as 𝑖 ≤ 𝑛− 1.

All that remains is establishing (2.27) for 𝑖 = 𝑛 and 0 < 𝑗 ≤ 𝑛− 1. Using

𝐾𝑗(𝑛;𝑛) = (−1)𝑗
(︂
𝑛

𝑗

)︂

and cancelling common factors, we reduce our task to establishing

(−1)𝑗𝑛 ≤ (𝑛− 𝑗)(𝑞 − 1)𝑗 + (−1)𝑛𝑗(𝑞 − 1)𝑗−𝑛. (2.30)

If 𝑗 is odd, it suffices to prove that

(𝑞 − 1)𝑛 ≥ 𝑗

𝑛− 𝑗
.

Since we have the well known 2𝑛 ≥ 𝑛− 1, we get

(𝑞 − 1)𝑛 ≥ 2𝑛 ≥ 𝑛− 1 ≥ 𝑗

𝑛− 𝑗

as 𝑗 ≤ 𝑛− 1, thus proving the 𝑗 odd case.
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Now suppose 𝑗 is even. If 𝑛 is even, it suffices to prove

𝑛

𝑛− 𝑗
≤ (𝑞 − 1)𝑗.

But we have
𝑛

𝑛− 𝑗
≤ 𝑗 + 1 ≤ 2𝑗 ≤ (𝑞 − 1)𝑗

using the well known 2𝑗 ≥ 𝑗 + 1. Now suppose 𝑛 is odd. We note that it suffices to

prove (2.30) for 𝑛 = 𝑗 + 1, since for a fixed 𝑗 incrementing 𝑛 by 1 increases the left

hand side by 1, while the right hand side increases by at least 4 since 𝑞 ≥ 3. Now for

𝑛 ≥ 3 we have by an obvious induction

3𝑛

2
− 1

2
≤ 2𝑛−1.

Thus, we have

𝑛+
𝑛− 1

𝑞 − 1
≤ 𝑛+

𝑛− 1

2
≤ 2𝑛−1 ≤ 𝑞𝑛−1,

completing the proof of (2.30).

Lemma 13 will allow us to prove Theorem 2 quite easily. We use the framework

of [29, Prop 5].

Proof of Theorem 2. We begin by noting that the statement for the full space (2.5)

is trivial. Slightly less trivial, but also clear is (2.2).

Nevertheless, we shall examine (2.2) from the LP perspective, in order to then use

duality and obtain (2.4).

As we are working with the subcube of cardinality 𝑞, we already have quite a lot

of information on what to use for ℎ. Specifically, we know ℎ(𝑖) = 𝑐0 + 𝑐𝑛𝐾𝑛(𝑖) for

some 𝑐𝑛 ≥ 0. We need ℎ(1) = 𝑓(1), this gives us

𝑐0 − 𝑐𝑛(𝑞 − 1)𝑛−1 = 𝑓(1).
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A simple choice is to use 𝑐0 = 𝑓(1) and 𝑐𝑛 = 0. This choice works as long as

𝑓(1) ≤ 𝑓(𝑘) ∀𝑘 > 1, (2.31)

yielding the desired objective value of (𝑞 − 1)𝑓(1). Constraint (2.31) is met by all

𝑓 ∈ ℱ , thus proving (2.2) from the LP perspective, although it is trivial to see directly

as well. More importantly we note that by (2.25) and Lemma 12 all functions in ℱ⊥

also satisfy (2.31). By a simple modification of [29, Prop 9] to use ℱ and ℱ⊥ instead

of 𝒢, we have proved the 𝒞𝑞,𝑛−1 case (2.4).

We now turn to the cube of size 𝑞2. Duality will then allow us to obtain the

corresponding statements for 𝑞𝑛−2. Once again, we know that

ℎ(𝑖) = 𝑐0 + 𝑐𝑛𝐾𝑛(𝑖) + 𝑐𝑛−1𝐾𝑛−1(𝑖)

for some 𝑐𝑛, 𝑐𝑛−1 ≥ 0 and that we also need ℎ(1) = 𝑓(1) and ℎ(2) = 𝑓(2). A simple

choice is to use 𝑐𝑛−1 = 0. Thus, we have ℎ(𝑖) = 𝑐0 + 𝑐𝑛(−1)𝑖(𝑞 − 1)𝑛−𝑖. Solving the

simultaneous linear equations ℎ(1) = 𝑓(1) and ℎ(2) = 𝑓(2) for 𝑐0, 𝑐𝑛, we get

ℎ(𝑖) = 𝑓(1)
1

𝑞
+ 𝑓(2)

𝑞 − 1

𝑞
+

(−1)𝑖(𝑓(2) − 𝑓(1))

𝑞(𝑞 − 1)𝑖−2
. (2.32)

We note that such an ℎ, if it satisfies ℎ(𝑖) ≤ 𝑓(𝑖) ∀1 ≤ 𝑖 ≤ 𝑛, yields the desired

objective value since

𝑞2𝑐0 − ℎ(0) = 𝑞𝑓(1) + 𝑞(𝑞 − 1)𝑓(2) − 𝑐0 − 𝑐𝑛(𝑞 − 1)𝑛

= 𝑞𝑓(1) + 𝑞(𝑞 − 1)𝑓(2) − 𝑐0 −
(𝑞 − 1)2(𝑓(2) − 𝑓(1))

𝑞

=

(︂
𝑞 − 1

𝑞
+

(𝑞 − 1)2

𝑞

)︂
𝑓(1) +

(︂
𝑞(𝑞 − 1) − 𝑞 − 1

𝑞
− (𝑞 − 1)2

𝑞

)︂
𝑓(2)

= 2(𝑞 − 1)𝑓(1) + (𝑞 − 1)2𝑓(2).

It is clear from the form of ℎ (2.32) that ℎ(𝑖) lies in between 𝑓(1) and 𝑓(2) for

all 1 ≤ 𝑖 ≤ 𝑛, regardless of the value of 𝑞. Now, if 𝑓 is a monotonically increasing
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function, such an ℎ is a valid dual certificate. In particular, any 𝑓 ∈ ℱ satisfies this

constraint, so we have proved (2.3). As 𝒢 ⊆ ℱ and 𝒢 is invariant under duality,

by [29, Prop 9] we have proved (2.7). In fact, we can conclude the analog of (2.7) for

general 𝑞. Nonetheless, we wish to prove something stronger for 𝑞 > 2, namely (2.6).

Here (2.26) plays an important role. First, note that by the analog of [29, Prop 9]

for ℱ ,ℱ⊥ it suffices to show universal optimality over ℱ⊥ for 𝒞𝑞,2. Equivalently we

may show it over a spanning set of ℱ⊥, without loss that given by 12.

The validity of ℎ given by (2.32) would follow from the inequality

− 1

𝑞
𝐾𝑗−1(0) − 𝑞 − 1

𝑞
𝐾𝑗−1(1) +

(−1)𝑖(−𝐾𝑗−1(1) +𝐾𝑗−1(0))

𝑞(𝑞 − 1)𝑖−2
≤ −𝐾𝑗−1(𝑖− 1). (2.33)

Negating and relabelling the indices 𝑗 − 1 → 𝑗, 𝑖 − 1 → 𝑖, and the implicit index

𝑛 − 1 → 𝑛, (2.33) is nothing but (2.26). This completes the proof of (2.6), and in

turn Theorem 2.

2.5 Connection to maximum noise stability

The main goal of this section is to elaborate upon the connection between the “ground

state” problem for anticodes and “maximal noise stability”. The key idea is that an

anticode may be viewed as the inverse image of {0} (or by complementarity {1}) of a

Boolean valued function. Furthermore, it is not unreasonable to expect a connection,

since we know that by the edge isoperimetric inequality, subcubes are optimal sets

in terms of their edge boundary. Thus the edge isoperimetric inequality implies

that subcubes are optimal anticodes with respect to a potential function that is zero

everywhere except at distance 1, where it is negative. The corresponding functions,

namely the and𝑘 functions have very good noise stability when 𝑘 is small, especially

in the low noise limit. In fact, the derivative of noise stability with respect to the noise

parameter at noise level 0 is an affine function of the size of the edge boundary [89,

Prop 2.51].

We first prove a lemma that makes this connection precise. As this lemma does not
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necessarily require a product noise structure, we derive it in slightly greater generality.

Lemma 14. Let 𝑓 : F𝑛
𝑞 → {0, 1} be a Boolean valued function, and let 𝒞 = 𝑓−1({0}).

Let 𝑠(·|·) be a row-stochastic 𝑞𝑛 × 𝑞𝑛 transition probability matrix. We assume that 𝑠

has an additive noise structure that is equidistributed over Hamming shells. In other

words, 𝑠 is determined by the vector (𝑠0, . . . , 𝑠𝑛) with 𝑠(𝑦|𝑥) = 𝑠|𝑥−𝑦|, 𝑠𝑖 ≥ 0, and∑︀𝑛
𝑖=0

(︀
𝑛
𝑖

)︀
(𝑞 − 1)𝑖𝑠𝑖 = 1. Let ℎ(𝑖) = 𝑠𝑖 be a potential function. Then, we have:

Stab𝑠(𝑛, 𝑓) = 1 + 2|𝒞|𝑞−𝑛(𝐸ℎ(𝒞) + 𝑠0 − 1). (2.34)

Proof of Lemma 14.

Stab𝑠(𝑛, 𝑓) = Pr(𝑓(x) = 𝑓(y))

=
1

𝑞𝑛

(︃∑︁
𝑥∈𝒞

Pr(y ∈ 𝒞|x = 𝑥) +
∑︁
𝑥∈𝒞𝑐

Pr(y ∈ 𝒞𝑐|x = 𝑥)

)︃

=
1

𝑞𝑛

(︃∑︁
𝑥∈𝒞

Pr(y ∈ 𝒞|x = 𝑥) + 𝑞𝑛 − |𝒞| −
∑︁
𝑥∈𝒞𝑐

Pr(y ∈ 𝒞|x = 𝑥)

)︃

=
1

𝑞𝑛

(︃∑︁
𝑥∈𝒞

Pr(y ∈ 𝒞|x = 𝑥) + 𝑞𝑛 − |𝒞| −
∑︁
𝑥∈𝒞

Pr(y ∈ 𝒞𝑐|x = 𝑥)

)︃

=
1

𝑞𝑛

(︃∑︁
𝑥∈𝒞

Pr(y ∈ 𝒞|x = 𝑥) + 𝑞𝑛 − |𝒞| − |𝒞| +
∑︁
𝑥∈𝒞

Pr(y ∈ 𝒞|x = 𝑥)

)︃

=
1

𝑞𝑛

(︃
2
∑︁
𝑥∈𝒞

Pr(y ∈ 𝒞|x = 𝑥) + 𝑞𝑛 − 2|𝒞|

)︃
(2.35)

= 1 − 2|𝒞|𝑞−𝑛 + 2𝑞−𝑛

(︃ ∑︁
𝑥∈𝒞,𝑦∈𝒞

𝑠|𝑥−𝑦|

)︃

= 1 + 2|𝒞|𝑞−𝑛(𝐸ℎ(𝒞) + 𝑠0 − 1).

We have chosen to highlight (2.35) as we will need this intermediate step later in

this chapter. This step depends upon the symmetry 𝑠(𝑦|𝑥) = 𝑠(𝑥|𝑦), but does not

need additive noise structure. We remark that Stab𝑠(𝑛, 𝑓) = Stab𝑠(𝑛, 𝑓) together
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with the above proof imply the “particle-antiparticle” relation involving the potential

energy [29, Sec VII].

In an application to noise stability, one naturally specializes the above Lemma 14

to the BSC and 𝑞-SC families. This gives us Corollary 1 and Corollary 2.

Proof of Corollaries 1 and 2. For general 𝑞, we have for the 𝑞-SC

𝑠𝑖 = (1 − 𝜖)𝑛−𝑖

(︂
𝜖

𝑞 − 1

)︂𝑖

= (1 − 𝜖)𝑛
(︂

𝜖

(𝑞 − 1)(1 − 𝜖)

)︂𝑖

Observe that if

0 ≤ 𝜖 ≤ 1 − 1

𝑞
,

we have

0 ≤ 𝜖

(𝑞 − 1)(1 − 𝜖)
≤ 1.

Thus 𝑠 gives a completely monotonic potential ℎ in Lemma 14. Lemma 14 shows that

maximizing noise stability subject to a cardinality constraint is equivalent to maxi-

mizing 𝐸ℎ(𝒞). We may then use Theorem 2 (specifically eqs. (2.4), (2.6) and (2.7))

together with complementarity (Stab𝑠(𝑛, 𝑓) = Stab𝑠(𝑛, 𝑓)) to obtain Corollary 1

and Corollary 2.

We remark that [29, Prop 29] allows us to remove an arbitrary point of a subcube

of measure 1/(𝑞2) and get universal optimality for a set of measure 1/(𝑞2) − 1/(𝑞𝑛).

By complementarity, one can add an arbitrary point to the complement of a subcube

to get universal optimality for a set of measure (𝑞2−1)/(𝑞2)+1/(𝑞𝑛). Similar remarks

apply to the other subcubes. We did not explicitly record these facts in Corollary 1

and Corollary 2 as such operations result in an asymptotically vanishing perturbation

of measure. Similarly, we did not record explicitly the noise stability analog for 𝒞𝑞,2
or 𝒞𝑞,1 since these subcubes have an asymptotically vanishing measure.

We also find it illustrative to express the noise stability across the 𝑞-SC of an anti-

code in terms of its dual distance distribution. One application of this is in providing
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a quick way to deduce the intuitive fact that the noise stability is monotonically non-

increasing from 𝜖 = 0 to 𝜖 = 1 − 1/𝑞 (Corollary 4), something which is unclear from

the expression (2.34). We note that we are essentially rephrasing the discussion of [89,

Sec. 2.4] in slightly different language and for general 𝑞; see also [89, Ex. 5.28]. The

link to Fourier analysis on the hypercube should not be too mysterious to the reader,

especially in view of our preliminary remarks 1.

Proposition 4. Let 𝜖 ∈ [0, 1]. Define the correlation factor

𝜌 , 1 − 𝑞𝜖

𝑞 − 1
.

Then we have

Stab𝜖(𝑛, 𝒞) = 1 + 2𝜇

(︃
𝜇

𝑛∑︁
𝑘=0

𝜌𝑘𝐴⊥
𝑘 − 1

)︃
. (2.36)

Here, 𝐴⊥
𝑘 denotes the dual distance distribution of 𝒞.

Proof. By the generating function for Krawtchouk polynomials (2.13), we have

ℎ(𝑖) = (1 − 𝜖)𝑛
(︂

𝜖

(𝑞 − 1)(1 − 𝜖)

)︂𝑖

= 𝑞−𝑛(1 + (𝑞 − 1)𝜌)𝑛−𝑖(1 − 𝜌)𝑖

= 𝑞−𝑛

𝑛∑︁
𝑘=0

𝐾𝑘(𝑖;𝑛, 𝑞)𝜌𝑘.

Then we have by (2.34)

Stab𝜖(𝑛, 𝑓) = 1 + 2𝜇

(︃
𝑛∑︁

𝑖=0

𝐴𝑖ℎ(𝑖) − 1

)︃

= 1 + 2𝜇

(︃
𝑞−𝑛

𝑛∑︁
𝑘=0

𝜌𝑘
𝑛∑︁

𝑖=0

𝐴𝑖𝐾𝑘(𝑖;𝑛, 𝑞) − 1

)︃

= 1 + 2𝜇

(︃
𝜇

𝑛∑︁
𝑘=0

𝜌𝑘𝐴⊥
𝑘 − 1

)︃
.

As an immediate corollary of 4, we have the desired monotonicity in 𝜖 of the noise
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stability.

Corollary 4. Stab𝜖(𝑛, 𝒞) is monotonically decreasing in 𝜖 for 0 ≤ 𝜖 ≤ 1 − 1
𝑞
. Fur-

thermore, with 𝜇 = |𝒞|
𝑞𝑛

, we have

Stab𝜖(𝑛, 𝒞) ≥ 𝜇2 + (1 − 𝜇)2.

Proof of Corollary 4. The interval for 𝜖 corresponds precisely to 0 ≤ 𝜌 ≤ 1. The

lower bound follows since 𝜌 = 0 corresponds to x ⊥ y.

2.6 A mean value theorem for noise stability

Although the BSC and 𝑞-SC are entirely reasonable channel models for noise stability

that are perhaps most useful for current applications, one may wonder what can be

said about maximal noise stability with respect to other channels. In general, this is

not an easy question. For example, the LP bounds (or the SDP generalizations) will

work only for a noise that respects the underlying symmetries of Hamming space as

seen in Lemma 14. In particular, it is easy to see that the only product noise that

respects such symmetries is the one given by the 𝑞-SC.

Intuitively, it seems clear that for a general channel maximal noise stability should

be at least as high as that for a 𝑞-SC with noise level being chosen appropriately to

match the “average” chance of a bit flip. This is because one should be able to “tailor” a

function better for a channel that does not treat coordinates and letters symmetrically.

One route to proving such things is by formulating a random coding/mean value

theorem for noise stability. Making these intuitive ideas precise is the subject of

Theorem 3.

Proof of Theorem 3. First, note that 𝑡 is nonnegative and row-stochastic, and thus a

valid probability kernel, by its definition (2.8). This ensures that (2.9) is well defined.

We have the following
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1

|Aut|
∑︁
𝜎∈Aut

Stab𝑠(𝑛, 𝜎𝑓)

=
1

|Aut|
∑︁
𝜎∈Aut

Pr((𝜎𝑓)(x) = (𝜎𝑓)(y))

=
1

|Aut|
∑︁
𝜎∈Aut

1

𝑞𝑛

∑︁
𝑥,𝑦∈F𝑛

𝑞

1(𝑓(𝜎𝑥) = 𝑓(𝜎𝑦))𝑠(𝑦|𝑥)

=
1

𝑞𝑛

∑︁
𝑥,𝑦∈F𝑛

𝑞

∑︁
𝜎∈Aut

1

|Aut|
1(𝑓(𝜎𝑥) = 𝑓(𝜎𝑦))𝑠(𝑦|𝑥)

=
1

𝑞𝑛

∑︁
𝑥,𝑦∈F𝑛

𝑞

∑︁
𝜎∈Aut

1

|Aut|
1(𝑓(𝑥) = 𝑓(𝑦))𝑠(𝜎−1𝑦|𝜎−1𝑥)

=
1

𝑞𝑛

∑︁
𝑥,𝑦∈F𝑛

𝑞

1(𝑓(𝑥) = 𝑓(𝑦))

(︃
1

|Aut|
∑︁
𝜎∈Aut

𝑠(𝜎−1𝑦|𝜎−1𝑥)

)︃

=
1

𝑞𝑛

∑︁
𝑥,𝑦∈F𝑛

𝑞

1(𝑓(𝑥) = 𝑓(𝑦))𝑡(𝑦|𝑥)

= Stab𝑡(𝑛, 𝑓).

This completes the proof.

Using Theorem 3 we can immediately derive the following corollary for maximal

noise stability.

Corollary 5. Using the notation of Theorem 3, we have

Stab*
𝑠(𝑛, 𝜇) ≥ Stab*

𝑡 (𝑛, 𝜇). (2.37)

Proof of Corollary 5. An important feature of the proof of Theorem 3 is that the

expected value of a Boolean function is invariant under our chosen group action, that

is E[𝑓(x)] = E[(𝜎𝑓)(x)]. Let a function 𝑓 be chosen such that subject to E[𝑓(x)] = 𝜇,

𝑓 attains maximal noise stability under 𝑡(·|·). By the above Theorem 3, we see that

there exists a 𝜎 ∈ Aut such that Stab𝑠(𝑛, 𝜎𝑓) ≥ Stab*
𝑡 (𝑛, 𝜇). Thus, Stab*

𝑠(𝑛, 𝜇) ≥

Stab𝑠(𝑛, 𝜎𝑓) ≥ Stab*
𝑡 (𝑛, 𝜇). This completes the proof.
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We may specialize 5 to the case of an i.i.d product kernel 𝑠(·|·) to get a “sym-

metrized” 𝑡(·|·) that corresponds to a 𝑞-BSC.

Corollary 6. Let 𝑠(𝑏𝑛|𝑎𝑛) =
∏︀𝑛

𝑖=1 𝑟(𝑏𝑖|𝑎𝑖) ∀𝑎𝑛 ∈ F𝑛
𝑞 be a product kernel, where 𝑟(·|·)

is a 𝑞×𝑞 probability kernel. Let 𝜖 = 𝑞−tr(𝑟)
𝑞

, where tr(𝑟) denotes the trace of the kernel

𝑟 viewed as a 𝑞 × 𝑞 row-stochastic matrix. Then, we have

Stab*
𝑟(𝑛, 𝜇) ≥ Stab*

𝜖(𝑛, 𝜇). (2.38)

Proof of Corollary 6. Let Π𝑞 denote the permutation group on 𝑞 letters. We know

that the distance preserving automorphisms of F𝑛
𝑞 consist of permutations of the

𝑛 coordinates composed with arbitrary permutations of the individual coordinates.

Using this decomposition, by (2.8), we have

𝑡(𝑦|𝑥) =
1

|Aut|
∑︁
𝜎∈Aut

𝑠(𝜎𝑦|𝜎𝑥)

=
1

|Aut|
∑︁
𝜎∈Aut

𝑛∏︁
𝑖=1

𝑟((𝜎𝑦)𝑖|(𝜎𝑥)𝑖)

=
𝑛!

|Aut|

𝑛∏︁
𝑖=1

∑︁
𝜎∈Π𝑞

𝑟(𝜎𝑦𝑖|𝜎𝑥𝑖)

=
𝑛∏︁

𝑖=1

⎡⎣ 1

𝑞!

∑︁
𝜎∈Π𝑞

𝑟(𝜎𝑦𝑖|𝜎𝑥𝑖)

⎤⎦
=

(︂
tr(𝑟)
𝑞

)︂𝑛−|𝑥−𝑦|(︂
𝑞 − tr(𝑟)
𝑞(𝑞 − 1)

)︂|𝑥−𝑦|
.

This proves (2.38).

2.7 Large 𝑛 and balls versus subcubes

One aspect of the anticoding problem that we find intriguing is the role of balls versus

subcubes in Hamming space. For example, the optimal anticodes in the isodiamet-

ric sense given by [7, Diametric Theorem] involve Cartesian products of balls and

subcubes. In the context of binary noise stability, at small expected value 𝜇 → 0
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and high noise 𝜖 → 1/2, it is well known that Hamming balls of appropriate radius

maximize noise stability in a sharp sense as 𝑛 → ∞ [110, Prop. 2.2]. On the other

hand, we know thanks to Corollary 1 that for 𝜇 ∈ {1/4, 1/2, 3/4} we maximize noise

stability regardless of 𝜖 ≤ 1/2 by using Hamming subcubes and their complements.

The goal of this section is to further explore the question of which sets maximize noise

stability subject to an expected value constraint.

It is perhaps useful to define a limiting notion of noise stability for a product noise

that captures 𝑛 → ∞. The formulation of a limiting value for noise stability avoids

issues such as how many points one needs to pick from the last shell of the Hamming

ball in order to meet a cardinality constraint, at the cost of possibly missing out

on finite 𝑛 phenomena. Although we do not make much further use of this limiting

notion once we establish it, we find it conceptually satisfying. Moreover, we do make

further use in our proof of Theorem 4 of some auxiliary Lemmas 15, 18 that are

established en route to this definition.

Once defined rigorously, we shall denote the maximum noise stability for a sym-

metric kernel 𝑟 on 𝒳 ×𝒳 by Stab*
𝑟(∞, 𝜇). In an analogous manner to our other nota-

tion, we may specialize to the 𝑞-SC with parameter 𝜖 and denote it by Stab*
𝜖(∞, 𝜇).

Our approach shall be to define the limit on 𝑞-adic 𝜇 first, and then extend by

uniform continuity to all 𝜇 ∈ [0, 1]. The first task is simple, and so we do it first.

In order to do so, it is helpful to understand the general behavior of Cartesian

products of anticodes under a product noise.

Lemma 15. Let 𝒞𝑚 ⊆ F𝑚
𝑞 have measure 𝜇𝑚 = |𝒞𝑚|/𝑞𝑚. Similarly, let 𝒞𝑛 ⊆ F𝑛

𝑞 have

measure 𝜇𝑛 = |𝒞𝑛|/𝑞𝑛. Let 𝑟(·|·) be a 𝑞 × 𝑞 symmetric transition probability matrix.

Let 𝒞 = 𝒞𝑚 × 𝒞𝑛. Then its measure 𝜇 = |𝒞|/𝑞𝑚+𝑛 = 𝜇𝑚𝜇𝑛, and its noise stability is

given by

Stab𝑟(𝑚+ 𝑛, 𝒞) + 2𝜇− 1 =
1

2
(Stab𝑟(𝑚, 𝒞𝑚) + 2𝜇𝑚 − 1)(Stab𝑟(𝑛, 𝒞𝑛) + 2𝜇𝑛 − 1).

Proof of Lemma 15. The measure statement is trivial. The stability statement follows
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readily from (2.35), as follows.

Stab𝑟(𝑚+ 𝑛, 𝒞) + 2𝜇− 1

=
2

𝑞𝑚+𝑛

∑︁
𝑥𝑚∈𝒞𝑚

∑︁
𝑥𝑛∈𝒞𝑛

Pr(y ∈ 𝒞|x = 𝑥)

=
2

𝑞𝑚+𝑛

∑︁
𝑥𝑚∈𝒞𝑚

∑︁
𝑥𝑛∈𝒞𝑛

Pr(y𝑚 ∈ 𝒞𝑚|x𝑚 = 𝑥𝑚) Pr(y𝑛 ∈ 𝒞𝑛|x𝑛 = 𝑥𝑛)

=
1

2

[︃
2

𝑞𝑚

∑︁
𝑥𝑚∈𝒞𝑚

Pr(y𝑚 ∈ 𝒞𝑚|x𝑚 = 𝑥𝑚)

]︃[︃
2

𝑞𝑛

∑︁
𝑥𝑛∈𝒞𝑛

Pr(y𝑛 ∈ 𝒞𝑛|x𝑛 = 𝑥𝑛)

]︃

=
1

2
(Stab𝑟(𝑚, 𝒞𝑚) + 2𝜇𝑚 − 1)(Stab𝑟(𝑛, 𝒞𝑛) + 2𝜇𝑛 − 1).

Lemma 16. Let 𝜇 = 𝑎
𝑞𝑘

be a 𝑞-adic fraction. Let 𝑟(·|·) be a row-stochastic 𝑞 × 𝑞

transition probability matrix. Then the following limit exists and may be used to

define

Stab*
𝑟(∞, 𝜇) , lim

𝑛→∞
Stab*

𝑟(𝑛, 𝜇). (2.39)

Proof of Lemma 16. The sequence at hand is uniformly bounded by 1. Furthermore,

we claim that it is non-decreasing. Let 𝒜*
𝑚 denote an optimal set for noise stability

at 𝜇 for 𝑛 = 𝑚. Consider 𝒜𝑚+1 = 𝒜*
𝑚 × F𝑞. Then by Lemma 15,

Stab*
𝑟(𝑚+ 1, 𝜇) ≥ Stab𝑟(𝑚+ 1,𝒜𝑚+1) = Stab𝑟(𝑚,𝒜*

𝑚) = Stab*
𝑟(𝑚,𝜇).

The slightly trickier task is to prove uniform continuity. Our approach to this is

to use a randomly chosen subset of the appropriate cardinality to get a reasonably

good subanticode given an optimal anticode. Our approach in fact yields Lipschitz

continuity.

The “averaging” step is contained in the following

Lemma 17. Let 𝑎𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 denote a collection of reals. Let 𝑚 ≤ 𝑛, and let 𝒜
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denote the collection of 𝑚-subsets of [𝑛]. Then, we have

1

|𝒜|
∑︁
ℬ∈𝒜

∑︁
(𝑖,𝑗)∈ℬ×ℬ

𝑎𝑖𝑗 =
𝑚

𝑛

𝑛∑︁
𝑖=1

𝑎𝑖𝑖 +
𝑚(𝑚− 1)

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

𝑎𝑖𝑗. (2.40)

Furthermore, if 𝑎𝑖𝑗 are nonnegative, we have the immediate estimate

1

|𝒜|
∑︁
ℬ∈𝒜

∑︁
(𝑖,𝑗)∈ℬ×ℬ

𝑎𝑖𝑗 ≥
𝑚(𝑚− 1)

𝑛(𝑛− 1)

∑︁
𝑖,𝑗

𝑎𝑖𝑗. (2.41)

Proof of Lemma 17. The fraction of the number of times a given diagonal element

appears is (𝑚
1 )

(𝑛
1)

. Similarly, for an off-diagonal element, it is (𝑚
2 )

(𝑛
2)

. This proves (2.40).

The estimate (2.41) follows immediately from 𝑚 ≤ 𝑛 and 𝑎𝑖𝑗 ≥ 0.

Lemma 17 together with the noise stability expression (2.35) allow one to readily

understand the noise stability of random subanticodes.

Lemma 18. Let 𝑚′ ≤ 𝑚 ≤ 𝑞𝑛 denote two cardinalities, and let 𝜇′ = 𝑚′
𝑞𝑛
, 𝜇 = 𝑚

𝑞𝑛

denote their respective measures. Let 𝒞 denote an anticode of size 𝑚. Let 𝒜 denote

the collection of anticodes 𝒞 ′ of size 𝑚′ obtained as 𝑚′-subsets of 𝒞. Then

1

|𝒜|
∑︁
𝒞′∈𝒜

Stab𝑟(𝑛, 𝒞 ′) ≥ (1 − 2𝜇′) +
𝜇′(𝑚′ − 1)

𝜇(𝑚− 1)
(Stab𝑟(𝑛, 𝒞) + 2𝜇− 1) . (2.42)

Proof of Lemma 18.

1

|𝒜|
∑︁
𝒞′∈𝒜

Stab𝑟(𝑛, 𝒞 ′) = (1 − 2𝜇′) +
2

𝑞𝑛

⎛⎝ 1

|𝒜|
∑︁
𝒞′∈𝒜

∑︁
(𝑥,𝑦)∈𝒞′×𝒞′

Pr(y = 𝑦|x = 𝑥)

⎞⎠
≥ (1 − 2𝜇′) +

𝑚′(𝑚′ − 1)

𝑚(𝑚− 1)

⎛⎝ 2

𝑞𝑛

∑︁
(𝑥,𝑦)∈𝒞×𝒞

Pr(y = 𝑦|x = 𝑥)

⎞⎠
= (1 − 2𝜇′) +

𝜇′(𝑚′ − 1)

𝜇(𝑚− 1)
(Stab𝑟(𝑛, 𝒞) + 2𝜇− 1) .

The above Lemmas 16, 18 allow us to uniquely define Stab*
𝑟(∞, 𝜇) via
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Proposition 5. There exists a unique Lipschitz continuous (in 𝜇) extension of Stab*
𝑟(∞, 𝜇)

defined on a dense subset via (2.39) to all 𝜇 ∈ [0, 1].

Proof of Proposition 5. Let 𝜇′ = 𝑚′/𝑞𝑘, 𝜇 = 𝑚/𝑞𝑘 be two 𝑞-adic measures in (0, 1).

Without loss of generality suppose 𝜇′ ≤ 𝜇. Let 𝜖 > 0, and choose 𝑛 ≥ 𝑘 large enough

such that we have simultaneously

Stab*
𝑟(∞, 𝜇′) − Stab*

𝑟(𝑛, 𝜇
′) ≤ 𝜖, (2.43)

Stab*
𝑟(∞, 𝜇) − Stab*

𝑟(𝑛, 𝜇) ≤ 𝜖, (2.44)

Stab*
𝑟(∞, 1 − 𝜇′) − Stab*

𝑟(𝑛, 1 − 𝜇′) ≤ 𝜖, (2.45)

Stab*
𝑟(∞, 1 − 𝜇) − Stab*

𝑟(𝑛, 1 − 𝜇) ≤ 𝜖, (2.46)

𝜇′2

𝜇2
− 𝜇′(𝑚′ − 1)

𝜇(𝑚− 1)
≤ 𝜖,

(1 − 𝜇)2

(1 − 𝜇′)2
− (1 − 𝜇)(𝑞𝑛 −𝑚− 1)

(1 − 𝜇′)(𝑞𝑛 −𝑚′ − 1)
≤ 𝜖.

We note that estimates (2.43), (2.44) are ineffective, as we do not know how fast

we converge to the large 𝑛 limit, though Lemma 16 guarantees that we get there

eventually. The following two (2.45), (2.46) follow from (2.43), (2.44) by taking

complements, and the remainder are effective.

Then by Lemma 18, we have a lower bound on Stab*
𝑟(∞, 𝜇′) − Stab*

𝑟(∞, 𝜇)

Stab*
𝑟(∞, 𝜇′) − Stab*

𝑟(∞, 𝜇)

≥ −2𝜖+ (1 − 2𝜇′) +

(︂
𝜇′(𝑚′ − 1)

𝜇(𝑚− 1)
− 1

)︂
Stab*

𝑟(𝑛, 𝜇) +
𝜇′(𝑚′ − 1)

𝜇(𝑚− 1)
(2𝜇− 1)

≥ −2𝜖+ (1 − 2𝜇′) +

(︂
𝜇′(𝑚′ − 1)

𝜇(𝑚− 1)
− 1

)︂
+
𝜇′(𝑚′ − 1)

𝜇(𝑚− 1)
(2𝜇− 1)

≥ −2𝜖+ (1 − 2𝜇′) +

(︂
𝜇′2

𝜇2
− 1 − 𝜖

)︂
+
𝜇′2

𝜇2
(2𝜇− 1) − 𝜖|2𝜇− 1|

≥ −4𝜖+ (1 − 2𝜇′) +

(︂
𝜇′2

𝜇2
− 1

)︂
+
𝜇′2

𝜇2
(2𝜇− 1)

= −4𝜖− 2𝜇′(𝜇− 𝜇′)

𝜇

≥ −4𝜖− 2(𝜇− 𝜇′). (2.47)
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Using the complementarity relations Stab*
𝑟(𝑛, 𝜇) = Stab*

𝑟(𝑛, 1−𝜇) and their limiting

equivalents Stab*
𝑟(∞, 𝜇) = Stab*

𝑟(∞, 1−𝜇) (valid at this stage for 𝑞-adic 𝜇), we may

get an upper bound in similar manner to (2.47) as

Stab*
𝑟(∞, 𝜇′) − Stab*

𝑟(∞, 𝜇) = −(Stab*
𝑟(∞, 1 − 𝜇) − Stab*

𝑟(∞, 1 − 𝜇′))

≤ 4𝜖+ 2(𝜇− 𝜇′). (2.48)

As 𝜖 > 0 was arbitrary, combining eqs. (2.47) and (2.48) gives the estimate

|Stab*
𝑟(∞, 𝜇′) − Stab*

𝑟(∞, 𝜇)| ≤ 2|𝜇− 𝜇′|. (2.49)

The uniform continuity on the dense subset given by the 𝑞-adic fractions then extends

uniquely to a uniformly continuous function of all 𝜇 ∈ [0, 1] (see e.g. [100, Prob. 4.13]),

and in fact a Lipschitz continuous function with Lipschitz constant 2.

Remark 3. The constant 2 is the best possible in the estimate (2.49). For example,

consider 𝜖 = (𝑞 − 1)/𝑞 and 𝑟 the 𝑞-SC(𝜖). Then, y ⊥ x, and so Stab*
𝑟(∞, 𝜇) =

𝜇2 + (1 − 𝜇)2. Differentiating at 𝜇 = 0 demonstrates the tightness of (2.49).

We also note that Stab*
𝑟(∞, 𝜇) is not necessarily differentiable everywhere. Take

for instance 𝑟(𝑦|𝑥) = 1(𝑦 = 0). Then,

Stab*
𝑟(∞, 𝜇) = Stab*

𝑟(𝑛, 𝜇) = max(𝜇, 1 − 𝜇).

Our goal now is to explore the role of balls versus subcubes in the context of noise

stability for the 𝑞-SC in more detail. First, we give an example where balls do better

than subcubes for high values of noise. We have the following

Proposition 6. For 𝑞 ≥ 3 and 𝑛 ≥ 𝑞2+𝑞+1, 𝒞𝑞,3 is not universally optimal for noise

stability across the family of 𝑞-SC(𝜖), 0 ≤ 𝜖 ≤ 1 − 1/𝑞. More specifically, for such

𝑛, 𝒞𝑞,3 is not optimal for noise stability in the interval ((2𝑞 + 1)/(1 + 𝑞)2, 1 − 1/𝑞).

For 𝑞 = 2, for all 𝑛 ≥ 3, 𝒞2,3 is universally optimal. For 𝑞 = 2, 𝑛 ≥ 12, 𝒞2,4 is

not universally optimal. More specifically, for such 𝑛, 𝒞2,4 is not optimal for noise
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stability in the interval
(︀
(19 −

√
137)/16, 1/2

)︀
⊃ (0.456, 0.5).

Proof of Proposition 6. As in Lemma 9, we know that the distance distribution of

𝒞𝑞,𝑘 is 𝐴 where 𝐴𝑖 =
(︀
𝑘
𝑖

)︀
(𝑞 − 1)𝑖. Thus its energy with respect to

ℎ(𝑖) = (1 − 𝜖)𝑛
(︂

𝜖

(𝑞 − 1)(1 − 𝜖)

)︂𝑖

is

𝐸ℎ(𝒞𝑞,𝑘) = (1 − 𝜖)𝑛
𝑘∑︁

𝑖=1

(︂
𝑘

𝑖

)︂
(𝑞 − 1)𝑖

(︂
𝜖

(𝑞 − 1)(1 − 𝜖)

)︂𝑖

= (1 − 𝜖)𝑛((1 − 𝜖)−𝑘 − 1). (2.50)

Now suppose 𝑞 ≥ 3, and consider the Hamming ball of radius 1, denoted by

ℬ𝑞2+𝑞+1,𝑞,1. The cardinality of this ball is 1 + 𝑛(𝑞 − 1) = 𝑞3. We remark that this is

the smallest cube we could hope for by Theorem 2. The distance distribution of this

Hamming ball is 𝐵 where 𝐵0 = 1, 𝐵1 = (𝑞3 − 1)/𝑞2, 𝐵2 = (𝑞3 − 1)(𝑞2 − 1)/𝑞2 and

𝐵𝑖 = 0 for 𝑖 > 2. Thus

𝐸ℎ(ℬ𝑞2+𝑞+1,𝑞,1) = (1 − 𝜖)𝑛
[︂

𝜖(𝑞3 − 1)

(1 − 𝜖)(𝑞 − 1)𝑞2
+
𝜖2(𝑞3 − 1)(𝑞2 − 1)

(1 − 𝜖)2(𝑞 − 1)2𝑞2

]︂
= (1 − 𝜖)𝑛

[︂
𝜖(𝑞2 + 𝑞 + 1)(𝜖𝑞 + 1)

(1 − 𝜖)2𝑞2

]︂
. (2.51)

Thus for 𝑘 = 3, we see by eqs. (2.50) and (2.51) that 𝐸ℎ(ℬ𝑞2+𝑞+1,𝑞,1) ≥ 𝐸ℎ(𝒞𝑞,3)

precisely when
(𝑞2 + 𝑞 + 1)(𝜖𝑞 + 1)(1 − 𝜖)

𝑞2
≥ 𝜖2 − 3𝜖+ 3. (2.52)

Treating (2.52) as a quadratic in 𝜖, we see that the roots of this quadratic are

𝑟1 = 1 − 1

𝑞
, 𝑟2 =

2𝑞 + 1

(1 + 𝑞)2
.

Note that 𝑟1 is expected as it corresponds to y ⊥ x, in which case the noise stability

does not depend on the actual anticode.
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We claim that for 𝑞 ≥ 3, 𝑟2 < 𝑟1. Cross multiplying, this reduces to showing that

for 𝑞 ≥ 3,

𝑓(𝑞) = 𝑞3 − 𝑞2 − 2𝑞 − 1 > 0.

This claim may be proved readily. For example, at 𝑞 = 3 the inequality is true as

11 > 0. Differentiating, we get 𝑓 ′(𝑞) = 3𝑞2 − 2𝑞 − 2, and the roots of 𝑓 ′(𝑞) = 0 are

(1 ±
√

7)/3, which are both less than 3. This root check completes the proof of the

𝑞 ≥ 3 case, since for 𝑛 > 𝑞2 + 𝑞 + 1, we may simply take a Cartesian product with

{0} on 𝑛− (𝑞2 + 𝑞 + 1) coordinates.

We now turn to 𝑞 = 2. Here we can not rely on using 𝒞2,3, since in fact it may

easily be checked by hand (using Proposition 3 to simplify the case analysis) that 𝒞2,3
is universally optimal for 𝑛 ≥ 3. Hence we move to 𝒞2,4, and use an “almost-Hamming

ball” for 𝑛 = 12 and of cardinality 16. This time, we take care of the last shell by

filling it in lexicographic order. The distance distribution 𝐵 of this anticode ℬ is

given by 𝐵0 = 1, 𝐵1 = 9/4, 𝐵2 = 9, 𝐵3 = 15/4 and 𝐵𝑖 = 0 for 𝑖 > 3. Then

𝐸ℎ(ℬ) = (1 − 𝜖)𝑛
[︂

9𝜖

4(1 − 𝜖)
+

9𝜖2

(1 − 𝜖)2
+

15𝜖3

4(1 − 𝜖)3

]︂
. (2.53)

Thus by eqs. (2.50) and (2.53), we see that 𝐸ℎ(ℬ) ≥ 𝐸ℎ(𝒞2,4) precisely when

4𝜖− 6𝜖2 + 4𝜖3 − 𝜖4

(1 − 𝜖)4
≤ 3𝜖(3 + 6𝜖− 4𝜖2)

4(1 − 𝜖)3
.

Cross multiplying, this boils down to studying when

𝑔(𝑥) , 16𝑥3 − 46𝑥2 + 33𝑥− 7 ≥ 0.

As we already know one root 𝑠1 = 1/2, we may easily find the other roots

{𝑠2, 𝑠3} =
19 ±

√
137

16
.

The root below 1/2 is what matters for us. Once again, the derivative checks out, so

we have our desired interval. This completes the proof.
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We remark that by no means is Proposition 6 tight in the sense of the obtained

measures. The parameters were chosen above to reflect the smallest cube cardinalities

where universal optimality does not exist. As can be seen in the proof above, it also

has the advantage of producing a low degree polynomial that can be analyzed by

hand readily. For example, the above proof yields for 𝑞 = 2 an anticode example of

measure 1/256. It turns out one can do far better:

Remark 4. Let 𝑛 = 19 and 𝑞 = 2. Then, 𝒞2,14 is not universally optimal across the

BSC-𝜖 family. More specifically, 𝒞2,14 is not optimal for 𝜖 ∈ (0.484, 0.5). Note that

the measure here is 1/32. The example is simply an “almost-Hamming ball” of the

appropriate cardinality, with the last shell filled in lexicographic order.

We note that the lack of universal optimality at measure 1/32, or more broadly

Proposition 6, is not mysterious, and may be understood more conceptually as fol-

lows. The discussion here follows closely [89, Sec 5.4], and we give a summary. The

derivative of noise stability with respect to 𝜖 at high noise 𝜖 = 1/2 is proportional to

the degree-1 Fourier weight. For a Hamming ball, as 𝑛 → ∞, the degree-1 Fourier

weight as a function of the measure is given by the square of the Gaussian isoperimet-

ric function due to the central limit theorem ( [89, Propn. 5.25]). The corresponding

quantity for subcubes is also given in [89, pg 125]. One may then numerically com-

pute the values for measure 1/32 and compare. This consideration tells us that for

some large enough 𝑛, one should be able to construct an “almost-Hamming ball” of

measure 1/32 that does better than the corresponding cube for high noise. The above

Remark 4 is simply a numerical quantification; 𝑛 = 19 was the smallest 𝑛 for which

the “almost-Hamming ball” happened to work.

We also note that 1/32 represents the largest measure where this phenonmenon

occurs; at 1/16, 1/8 one can check that subcubes do better than balls at high noise,

and for 1/4, 1/2 we have universal optimality of subcubes by Theorem 2. We suspect

that there is universal optimality for measures 1/16, 1/8, and raise the following

Conjecture 1. Let 𝑞 = 2. Then for all 𝑛 ≥ 4, 𝒞2,𝑛−3, 𝒞2,𝑛−4 are universally optimal

with respect to the cone of all negations of completely monotonic functions 𝒢 (defined
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in Theorem 2).

We have the following numerical evidence in favor of the 1/8 case of Conjecture 1.

One may use the “order-1” SDP bounds of [102] to study this problem (we used

SDPA-GMP for this purpose, see e.g. [85]); they represent a natural generalization of

the LP bounds. These bounds do manage to certify universal optimality for the 1/8

case for 𝑛 ≤ 8, but unfortunately do not do so for 𝑛 = 9 onwards. For the 1/16 case,

there seems to be no nontrivial certificates: even 𝑛 = 7 is not certified, even though

we know that 𝒞2,3 is universally optimal (see e.g. Proposition 6). It is possible that a

higher constant order SDP bound will certify universal optimality for all 𝑛, at least

for 1/8.

We shall now use Proposition 6 to show that “universal optima are sparse for

anticoding”.

Our approach to showing this is by understanding how anticodes behave in Ham-

ming space when they are stacked. We accordingly have

Lemma 19. Let 𝑐 = 𝑘𝑞𝑙, 𝑐′ = 𝑟 be given, where 𝑐 + 𝑐′ ≤ 𝑞𝑛, 0 < 𝑐′ < 𝑞𝑙. Let

𝜇 = (𝑐+ 𝑐′)/𝑞𝑛, 𝜇′ = 𝑐′/𝑞𝑙. Let 𝒞1, 𝒞2 ⊂ F𝑙
𝑞 be two anticodes of cardinality 𝑐′. Let

𝒟1 =
(︀
{𝑘𝑞} × 𝒞1

)︀
,𝒟2 =

(︀
{𝑘𝑞} × 𝒞2

)︀
,

live in F𝑛
𝑞 . Let ℬ = L(F𝑛

𝑞 , 𝑐). Consider the anticodes 𝒜1,𝒜2 obtained by disjoint

union

𝒜1 = ℬ ∪̇𝒟1,

𝒜2 = ℬ ∪̇𝒟2.

We say that 𝒜1,𝒜2 are obtained by stacking. Then we have

Stab𝜖(𝑛,𝒜1) − Stab𝜖(𝑛,𝒜2) =
𝜇(1 − 𝜖)𝑛−𝑙

𝜇′ (Stab𝜖(𝑙, 𝒞1) − Stab𝜖(𝑙, 𝒞2)). (2.54)

Proof of Lemma 19. We observe that the only differences between the distance dis-
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tributions of 𝒜1 and 𝒜2 come from the distances internal to 𝒟1,𝒟2. This is because

ℬ is common to both, and the interactions between 𝒟1,𝒟2 and ℬ are identical due

to the symmetric nature of the projection of ℬ onto the lower 𝑙 coordinates. As such,

letting

ℎ(𝑖) = (1 − 𝜖)𝑛
(︂

𝜖

(𝑞 − 1)(1 − 𝜖)

)︂𝑖

, ℎ′(𝑖) = (1 − 𝜖)𝑙
(︂

𝜖

(𝑞 − 1)(1 − 𝜖)

)︂𝑖

,

we have by Lemma 14

Stab𝜖(𝑛,𝒜1) − Stab𝜖(𝑛,𝒜2) = 2𝜇(𝐸ℎ(𝒜1) − 𝐸ℎ(𝒜2))

= 2𝜇(𝐸ℎ(𝒟1) − 𝐸ℎ(𝒟2))

= 2𝜇(𝐸ℎ(𝒟1) − 𝐸ℎ(𝒟2))

= 2𝜇(1 − 𝜖)𝑛−𝑙(𝐸 ′
ℎ(𝒟1) − 𝐸 ′

ℎ(𝒟2))

=
𝜇(1 − 𝜖)𝑛−𝑙

𝜇′ (Stab𝜖(𝑙, 𝒞1) − Stab𝜖(𝑙, 𝒞2)).

With Lemma 19, we may deduce the lack of universal optimality at cardinality

𝑐 + 𝑐′ for F𝑛
𝑞 from the lack of universal optimality at 𝑐′ for F𝑙

𝑞. Thus combining

with Proposition 6 already gives us many more cardinalities where we lack universal

optimality than the examples furnished by Proposition 6 itself. Nevertheless, we

may do much better by combining further with Lemmas 15, 18. In particular, this

combination suffices to achieve our aim here, namely that “universal optima are sparse

for anticoding”.

We have all the ingredients in place to prove Theorem 4, except for a technicality

that involves estimating the difference in noise stability between lex-sets of different

sizes. This technicality may be viewed as analogous to Lemma 18, except that this

time the anticodes at hand are nicely structured. In fact, this Lemma 20 only depends

on the nesting of two anticodes 𝒞 ⊆ 𝒞 ′.

Lemma 20. Let 𝒞 ⊆ 𝒞 ′ ⊆ F𝑛
𝑞 be two anticodes of measures 𝜇, 𝜇′ respectively, and
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consider noise stability with respect to the 𝑞-SC(𝜖). Then we have the estimate

|Stab𝜖(𝑛, 𝒞 ′) − Stab𝜖(𝑛, 𝒞)| ≤ 4(𝜇′ − 𝜇).

Proof of Lemma 20. As usual, we define ℎ(𝑖) = (1 − 𝜖)𝑛
(︁

𝜖
(𝑞−1)(1−𝜖)

)︁𝑖
. Observe that

each codeword in 𝒞 ′ ∖𝒞 can have at most
(︀
𝑛
𝑖

)︀
(𝑞− 1)𝑖 codewords at Hamming distance

𝑖 from it. From this observation, we can bound the difference of energy with respect

to ℎ and hence the noise stability (by Lemma 14) by

Stab𝜖(𝑛, 𝒞 ′) − Stab𝜖(𝑛, 𝒞) ≤ 2(𝜇′ − 𝜇) + 2𝑞−𝑛

𝑛∑︁
𝑖=0

ℎ(𝑖)|𝒞 ′ ∖ 𝒞|
(︂
𝑛

𝑖

)︂
(𝑞 − 1)𝑖

= 2(𝜇′ − 𝜇) + 2(1 − 𝜖)𝑛(𝜇′ − 𝜇)
𝑛∑︁

𝑖=0

(︂
𝜖

1 − 𝜖

)︂𝑖(︂
𝑛

𝑖

)︂
= 4(𝜇′ − 𝜇). (2.55)

We may apply complements as in the proof of Proposition 5 to get the symmetric

version of (2.55), namely

Stab𝜖(𝑛, 𝒞 ′) − Stab𝜖(𝑛, 𝒞) = −(Stab𝜖(𝑛, 𝒞) − Stab𝜖(𝑛, 𝒞 ′))

≥ 4(𝜇− 𝜇′).

This completes the proof.

All the pieces are now in play to prove Theorem 4. We remark that all estimates

we use here are effective unlike Proposition 5 since we focus on finite but large enough

𝑛, though we prefer not to quantify the required parameters for simplicity.

Proof of Theorem 4. Proposition 6 guarantees the existence of a cube size 𝑘(𝑞), a

suitably large 𝑛0(𝑞), an anticode 𝒞(𝑞), an interval 𝐼(𝑞) = (𝜖(𝑞), 1 − 1/𝑞), and a lower

bound 𝑐(𝑞) > 0 such that for all 𝜖 ∈ 𝐼(𝑞),

Stab𝜖(𝑛0(𝑞), 𝒞(𝑞)) − Stab𝜖(𝑛0(𝑞), 𝒞𝑞,𝑘(𝑞)) ≥ 𝑐(𝑞). (2.56)

73



For 𝑛′ ≥ 𝑛0(𝑞), considering the product anticode

𝒟(𝑛′, 𝑠, 𝑞) = 𝒞(𝑞) × L(F𝑛′−𝑛0(𝑞)
𝑞 , 𝑠)

for any 1 ≤ 𝑠 ≤ 𝑞𝑛
′−𝑛0(𝑞), we get by Lemma 15 and (2.56),

Stab𝜖(𝑛
′,𝒟(𝑛′, 𝑠, 𝑞)) − Stab𝜖(𝑛

′,L(F𝑛′
𝑞 , 𝑠𝑞

𝑘(𝑞))) =

𝑐(𝑞)

2
(Stab𝜖(𝑛

′ − 𝑛0(𝑞),L(F𝑛′−𝑛0(𝑞)
𝑞 , 𝑠)) + 2𝑠𝑞𝑛0(𝑞)−𝑛′ − 1). (2.57)

We can lower bound the right hand side of (2.57) by Corollary 4 to get

Stab𝜖(𝑛
′,𝒟(𝑛′, 𝑠, 𝑞)) − Stab𝜖(𝑛

′,L(F𝑛′
𝑞 , 𝑠𝑞

𝑘(𝑞))) ≥ 𝑐(𝑞)𝜇′(𝑞, 𝑠, 𝑛′)2, (2.58)

where 𝜇′(𝑞, 𝑠, 𝑛) = 𝑠/𝑞𝑛
′−𝑛0(𝑞). The goal is a uniform lower bound, so we specialize to

𝑠 an integer satisfying

𝑞𝑛
′−𝑛0(𝑞)−𝑛1(𝑞) ≤ 𝑠 ≤ 𝑞𝑛

′−𝑛0(𝑞).

Letting

𝜇(𝑞) , 𝑞𝑘(𝑞)−𝑛0(𝑞), 𝜈(𝑞) = 𝑞𝑘(𝑞)−𝑛0(𝑞)−𝑛1(𝑞),

we have by the above (2.58) a uniform lower bound (call it 𝑐′(𝑞)) for measures

𝜈(𝑞), 𝜈(𝑞) + 𝑞𝑘(𝑞)−𝑛′
, 𝜈(𝑞) + 2𝑞𝑘(𝑞)−𝑛′

, . . . , 𝜇(𝑞).

We now interpolate to the full range of integers in [𝜈(𝑞), 𝜇(𝑞)] by using the above

measures as anchors. We do this by using a random subanticode for the first term

on the left of (2.58) (cf. Lemma 18), and the estimate for the difference of noise

stability between lex-sets for the second term (cf. Lemma 20). As 𝜈(𝑞), 𝜇(𝑞) are fixed

and bounded away from 0, there exists an 𝑛2(𝑞) such that for any 𝑛′ ≥ 𝑛2(𝑞) and
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cardinality 𝑟 ∈ [𝜈(𝑞)𝑞𝑛
′
, 𝜇(𝑞)𝑞𝑛

′
], there exists a subanticode 𝒟′(𝑛′, 𝑟, 𝑞) with

|Stab𝜖(𝒟′(𝑛′, 𝑟, 𝑞)) − Stab𝜖(𝒟(𝑛′, 𝑠(𝑟), 𝑞))| < 𝑐′(𝑞)

3
, (2.59a)

|Stab𝜖(𝑛
′,L(F𝑛′

𝑞 , 𝑠(𝑟)𝑞
𝑘(𝑞))) − Stab𝜖(𝑛

′,L(F𝑛′
𝑞 , 𝑟))| <

𝑐′(𝑞)

3
. (2.59b)

Here 𝑠(𝑟) denotes the largest integer of the form 𝑠𝑞𝑘(𝑞) at or below 𝑟. The esti-

mates eqs. (2.58) and (2.59) yield

Stab𝜖(𝑛
′,𝒟′(𝑛′, 𝑟, 𝑞)) − Stab𝜖(𝑛

′,L(F𝑛′
𝑞 , 𝑟)) >

𝑐′(𝑞)

3

∀𝑟 ∈ [𝜈(𝑞)𝑞𝑛
′
, 𝜇(𝑞)𝑞𝑛

′
], 𝑛′ ≥ 𝑛2(𝑞), 𝜖 ∈ 𝐼(𝑞). (2.60)

We may now stack 𝒟′(𝑛′, 𝑟, 𝑞) on top of ℬ = L(F𝑛
𝑞 , 𝑟

′) to get an anticode 𝒜(𝑛, 𝑟+𝑟′, 𝑞)

that does better than L(F𝑛
𝑞 , 𝑟+ 𝑟′) for 𝜖 ∈ 𝐼(𝑞) as long as the conditions of Lemma 19

are met.

One simple set of sufficient conditions on the cardinality 𝑟 and size 𝑛 is the fol-

lowing. Let 𝑟 =
∑︀𝑛−1

𝑖=0 𝑟𝑖𝑞
𝑛−𝑖 be the base 𝑞 expansion of 𝑟. Suppose we ignore the last

𝑛2(𝑞) digits, and focus on (𝑟0, 𝑟1, . . . , 𝑟𝑛−𝑛2(𝑞)−1). Let 𝑎(𝑞) ≤ 𝑏(𝑞) be two integers such

that 1 + log𝑞(𝜇(𝑞)−1) ≤ 𝑎(𝑞) ≤ 𝑏(𝑞) ≤ −1 + log𝑞(𝜈(𝑞)−1). Note that this is always

possible as we had flexibility in the choice of 𝜈(𝑞), indeed we can make [𝑎(𝑞), 𝑏(𝑞)]

have arbitrarily long, but constant (independent of 𝑛) length.

Suppose that there is a run of zeros in (𝑟0, . . . , 𝑟𝑛−𝑛2(𝑞)−1) of length 𝑙 with 𝑎(𝑞) ≤

𝑙 ≤ 𝑏(𝑞). Then, there is an anticode 𝒜 ⊆ F𝑛
𝑞 with |𝒜| = 𝑟 that does better than

L(F𝑛
𝑞 , 𝑟) for noise stability in the range 𝐼(𝑞). In particular, for these cardinalities

we do not have universal optimality of lex-sets, which are the only candidates for

universal optimality. It is also clear that the set of such cardinalities 𝒯 is contained

in 𝒮, and that it also has measure |𝒯 |/𝑞𝑛 ≥ 1− 𝑜 (𝑐′′(𝑞)𝑛), for some 𝑐′′(𝑞) < 1, simply

because we have to avoid a finite pattern. This completes the proof.
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2.8 Open problems

Many problems here remain open. What we find most attractive is the one we raise in

Conjecture 1, as it would complete the classification of which subcubes are universally

optimal for noise stability. One can also ask analogous questions for general 𝑞.

We also lay out a far more general version of this problem, where we ask for

characterizing the sharp value of

𝑠*𝑞(𝜇, 𝜖) , Stab*
𝜖(∞, 𝜇), (𝜇, 𝜖) ∈

[︂
0,

1

2

]︂
×
[︂
0, 1 − 1

𝑞

]︂
.

Other 𝜇 may be obtained by complementing, and other 𝜖 no longer reflect an anti-

coding problem. We give our speculations regarding the 𝑞 = 2 case based on what

we understood from proving Theorem 4. Let us consider a dyadic 𝜇 = 0.𝑎1𝑎2 . . . 𝑎𝑘,

where the 𝑎𝑘 denote bits in a binary expansion. By the stacking construction used in

proving Theorem 4, we know that with a sufficiently long run of zeros in the 𝑎𝑖, and

large enough 𝜖, we can stack some anticode on top of a lex-set to do better than a

lex-set of the same augmented cardinality in terms of noise stability. The anticodes

we used in the proof were bootstrapped from a finite phenomenon(e.g. Proposition 6,

Remark 4), with the finite phenomenon being given by an almost-Hamming ball. It

is perhaps more natural to stack almost-Hamming balls directly, and in fact it may

be possible to prove Theorem 4 by such an approach. However, it does not seem

easy to express the noise stability of a Hamming ball with measure different from 1/2

in convenient form, with even the degree-1 Fourier weight (that describes the limit

𝜖 → 1/2) involving the Gaussian isoperimetric function, and the full noise stability

expression involving the Gaussian quadrant probability (see e.g. [89, Ex. 5.32]. On

the other hand, it is possible that the focus on 𝑛 = ∞ helps with some technical is-

sues, such as the fact that we don’t know of a closed form for the distance distribution

of a Hamming ball, even for 𝑞 = 2.

As our focus was on a finite 𝑛 statement, for the proof, we favored the above

bootstrapping approach. Nevertheless, it is possible that examining the set bits of

𝜇’s binary expansion, and using the most favorable stacking of an almost-Hamming
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ball out of them on top of a lex-set will yield 𝑠*2(𝜇, 𝜖). We note that the relevant

distance distributions and noise stability may be computed in polynomial time (in 𝑛)

for a fixed cardinality. With numerical simulation, we were unable to come up with

any better construction of anticodes for large 𝑛. We note that our “stacking” pro-

posal here is to some extent anticipated by the reviewer comments described in [50].

Basically, the proposal of [50] was to simply use lex-sets without taking into account

the ball/subcube interplay that was pointed out by the reviewer. Thus much about

𝑠*𝑞(𝜇, 𝜖) remains open; indeed Theorem 2 characterizes just a couple of lines in the

(𝜇, 𝜖) square, while Theorem 4 shows that for a.s 𝜇, we lack universally optimal an-

ticodes.

Lastly, we find the use of Fourier analytic techniques for isodiametry intriguing,

and wish to return to this theme in future work. We also refer the reader to more

general remarks in our concluding Chapter 5 regarding the use of Fourier analytic

techniques for geometric questions.
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Chapter 3

Near-Optimal Coded Apertures for

Imaging via Nazarov’s Theorem

Given a convex set 𝐵 ∈ R2 (or R𝑛 , for Bang’s solution it is all the

same), is it possible to cover it by several strips of total width less than

the width of 𝐵 ? (The width of a convex body is defined as the width of

the narrowest strip containing it).

The conjectured answer was “no”, but it took about 40 years to prove

that. The proof, when found, was . . . 2 pages long and required from the

reader only basic knowlege of elementary geometry. For reader’s

convenience it is included into this paper as an appendix.

Of course, to solve the coefficient problem as it was stated above you

cannot just apply the result (. . . ), but it turns out that a minor

modification of the proof is enough. (So minor that I actually even do

not pretend to be an author of the next two sections; rather I act there

like a shadow that enters and goes over many strange places which

completely eliminate the attention of his master just passing by).

Fedor Nazarov, 1997
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3.1 Introduction

In Chapter 2, we saw the role that Fourier analysis on Hamming space played in

the resolution of a question in theoretical computer science. Along the way we also

developed some non Fourier-analytic machinery towards answering natural follow-up

questions, such as:

1. What happens for channels that are not BSC(𝜖)?

2. Can we completely classify the universally optimal anticodes in Hamming space?

In this chapter, we return to Fourier analysis, this time on finite cyclic groups

Z/𝑛Z, or in terms more familiar for engineers, the DFT (discrete Fourier transform).

To fix notation and our choice of normalization, let us first define for convenience

𝑒(𝑧) , 𝑒2𝜋𝑖𝑧 as is commonly done in say analytic number theory. We then define the

DFT of a length 𝑛 vector 𝑎⃗ = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) to be a length 𝑛 vector ̂⃗︀𝑎 given by

̂⃗︀𝑎𝑘 =
𝑛∑︁

𝑗=0

𝑎⃗𝑗𝑒

(︂
−𝑗𝑘
𝑛

)︂
.

It is also convenient for us to write

1⃗ , (1, 1, . . . , 1).

Some illustrative examples to make sure that we are on the same page regarding

the choice of normalization are

𝑎⃗ = (𝑛, 0, 0, . . . , 0) ⇔ ̂⃗︀𝑎 = (𝑛, 𝑛, . . . , 𝑛),

𝑏⃗ = (1, 1, 1, . . . , 1) ⇔ ̂⃗︀
𝑏 = (𝑛, 0, . . . , 0).

With this notational clarification, let us examine a problem that arises in the

context of computational imaging. Certain modern imaging systems, especially those

operating at high frequencies, use coded apertures. In these systems, a spatial mask

that selectively blocks light from reaching the sensor is used as opposed to a traditional
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Figure 3-1: “De Radio Astronomica et Geometrica”, Gemma Frisius, 1545

Figure 3-2: Proposal of [37]

lens. The scene is then recovered by suitable post-processing. Perhaps the earliest

and simplest instance of coded aperture imaging is the pinhole structure (c. 470-391

BCE, Mozi in China [87, pp. 97-99]); see, e.g., [126] for a survey and Figure 3-1 for

an illustration.

The development of X-ray and gamma-ray astronomy gave rise to more sophis-

ticated coded apertures [1, 37] to get around the lack of lenses and mirrors in such

settings. For the reader curious as to why it can be difficult to fabricate lenses and

mirrors for such high frequencies, it turns out that most materials end up having

a refractive index near 1 at such frequencies. This fact may be understood from

standard dipole/induced dipole and associated oscillator analysis, and an elementary

treatment may be found in e.g. [45, Ch. 32].

Both Ables and Dicke [1, 37] proposed using random blockage patterns with a

specified mean transmittance as a method to increase the aperture size as compared

to the classical pinhole while retaining its resolution benefits. Dicke’s construction

is shown in Figure 3-2. Naturally, this also requires a certain nontrivial decoding

procedure to recover the image from the superposition formed from the various copies
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Figure 3-3: Maximum spectral magnitude of random on-off, normalized
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across the different holes. The decoding may done (classically) in analog, or digitally

with a computer. In particular, Dicke [37, Fig 2-4] proposed various beautiful analog

decoders.

A more modern development of special importance to this chapter is the usage

of uniformly redundant arrays (URA) to improve upon random on-off patterns [44].

At a high level, the reason for their superior performance is that the DFT of such a

pattern 𝑎⃗ is “spectrally flat”, that is |̂⃗︀𝑎𝑖| is constant across all 𝑖 ̸= 0. “Spectral flatness”

is not even close to being achieved with a random on-off pattern drawn from the i.i.d.

Bernoulli(0.5) ensemble across the 𝑛 components, as can be verified numerically by

plotting e.g. 𝑀 (⃗𝑎) , max𝑖 ̸=0 |̂⃗︀𝑎𝑖| for 𝑖 ̸= 0 versus 𝑚(⃗𝑎) , min𝑖 ̸=0 |̂⃗︀𝑎𝑖| for a random on-

off pattern (a random (0, 1, 1, 0, 0, 0, . . . , 1) vector of length 𝑛). For a spectrally flat

pattern with
∑︀

𝑖 𝑎⃗𝑖 = Θ(𝑛), 𝑀 (⃗𝑎),𝑚(⃗𝑎) = Θ(
√
𝑛). As can be seen in Figures 3-3, 3-4,

for a random on-off pattern, this is certainly not the case.

From a historical perspective, this mathematical phenomenon was studied in great

depth by Salem and Zygmund in their paper on trigonometric sums with random
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Figure 3-4: Minimum spectral magnitude of random on-off, normalized
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signs [101, Ch. 4]. In particular, [101, Ch. 4] elucidates the 𝑀 (⃗𝑎) = Θ(
√︀
𝑛 log(𝑛))

behavior observed in the plot.

Other modern developments include anti-pinhole imaging [25], as well as the com-

bining of mask and lens in order to, e.g., facilitate depth estimation [75], deblur

out-of-focus elements in an image [131], enable motion deblurring [95], and/or re-

cover 4D lightfields [119]. Even more recent work seeks to forgo lenses altogether to

decrease costs and meet physical constraints [40, 11]. Understanding coded apertures

is also relevant in non-line-of-sight applications where masks naturally occur as scene

occlusions [115, 113].

In light of the increased importance of coded apertures, prior work [125] described

a model under which they can be analyzed. This model uses far-field geometric optics

to model light propagation and a sensor model that includes thermal and shot noise

components. Our analysis [8] is performed with respect to a slight refinement of the

model of [125]. The basic element at play is an aperture, which we model as a discrete

vector of length 𝑛. Our choice of a discrete vector reflects a one-dimensional imaging
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model, and is done purely for notational convenience and clarity. We request patience

from the reader who does not find such a restriction reasonable, since all will become

clear eventually. See in particular Sec. 3.4 for remarks on this aspect.

We denote the aperture by 𝑎⃗ ∈ R𝑛, and we assume it satisfies 𝑎⃗ ≥ 0 entry-wise.

Basically, the aperture entries model how much incoming power is sent onwards. For

example, a larger entry means that more light is let through at that location of the

aperture, and an entry of zero means that all light is blocked. Thus, a key notion

that both [8, 125] account for is that of transmissivity.

Definition 14. For an aperture 𝑎⃗, we define its transmissivity 𝜌(⃗𝑎) by

𝜌(⃗𝑎) ,
1

𝑛

∑︁
𝑖

𝑎⃗𝑖.

Together with mutual information (MI) as a performance metric, [125] compared

the classical random on-off apertures [1, 37] of varying transmissivity (think of i.i.d.

Bernoulli(𝑝) ensemble to target a transmissivity 𝑝) to the “spectrally flat” patterns

with transmissivity 1/2 (same as the URA of [44])1. Among other things, the analysis

showed that when shot noise dominates thermal noise, randomly generated masks

with lower transmissivity than 1/2 offered greater performance compared to spectrally

flat patterns of transmissivity 1/2.

Our work here extends the work of [125] in multiple respects that may be broadly

grouped into the following three main contributions.

First, we refine the prior model of [125] by incorporating exposure time. The

effects of exposure time are illustrated well in the original proposal of [37], and ac-

cordingly the model of [44] (based off the PhD thesis [23]) incorporates it. Our model

is essentially equivalent to that of [44]. At a high level, a lengthier exposure time

clearly improves the signal to noise ratio (SNR), though the exact correspondence

between the two depends on the sources of noise (thermal vs shot noise) and their

statistics. However, this has associated costs, such as the inability to capture motion

1Technically, the transmissivity of the URA is 1/2 +𝑂 (1/𝑛). We omit this extra term in subse-
quent nontechnical discourse.
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accurately. For background on these sources of noise and how they affect reconstruc-

tion, we recommend [44] and the references therein.

Our high level goal is to design apertures that minimize the exposure time needed

for a given target reconstruction quality. There are a variety of reconstruction quality

metrics one can use, and unfortunately it is usually the case that the most percep-

tually meaningful metrics are not convenient for mathematical analysis. For exam-

ple, in the very popular context of video coding, a good state of the art metric

is “Video Multimethod Assessment Fusion” (VMAF) developed by Netflix (see e.g.

https://github.com/Netflix/vmaf and references therein), while a far more conve-

nient metric used classically and in more theoretical literature is peak signal-to-noise-

ratio (PSNR). As our focus is on mathematical development, we analyze analytically

convenient metrics, specifically mean squared error (MSE). Even that is not enough

for our purposes. For example, it is sensitive to the noise model, and for many noise

models is quite intractable. We therefore analyze linearly-constrained minimum mean

square error (LMMSE) estimation. Separate from considerations of analytical conve-

nience, we defend this choice since most practical decoders (analog/digital) for coded

apertures use linear procedures. We note that the prior model of [125] used MI under

a Gaussian noise model as a quality measure. At a high level, such a measure may

also be written in terms of the spectrum of the aperture, and our analysis is suffi-

ciently general to cover such a measure as well. Broadly and imprecisely, our methods

extend to a vast range of quality measures, as long as they can be written in terms

of the “content” of the aperture with respect to an orthonormal basis. We elaborate

upon these aspects in Sec. 3.4.

Second, we note that the classical URA based apertures have transmissivity 1/2.

Although the spectrum of such apertures is flat in magnitude, a fixed transmissivity

performs suboptimally under varying shot noise (proportional to the transmissivity)

versus thermal noise levels. As such, we describe how one can construct spectrally

flat sequences with transmissivities 1/8, 1/4 in addition to 1/2. The spectrally flat

sequences with these transmissivities 1/8, 1/4, when combined with the classical URA

work, extend the range of parameters where we have a sharp characterization of
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optimal coded apertures in our framework. Furthermore, these sequences allow us to

obtain a tight answer to the problem of optimal coded apertures for i.i.d. scenes; see

Props. 8, 9 for precise statements. Broadly, what we mean by “tight” is in the sense

of being within a constant multiplicative factor of optimal for the exposure time.

Equivalently, one can express this as a guarantee of being within a constant number

of dB in SNR of optimality.

Third, we provide optimal (again up to a constant) coded apertures, both in 1D

as well as in 2D, applicable for any prior on the spectrum of the scene at hand.

The sense of tightness of the optimality is given precisely in Prop. 10. The priors

on the scene spectrum include (but are not limited to) the naturally occuring power

law [83](𝑓−𝛾-prior). Our aperture design naturally varies depending on the choice of

prior, and we provide a (heuristically) efficient greedy algorithm for their generation.

As in [125], we use a 1D model to simplify the exposition of concepts and results. We

emphasize that all of the results of this chapter generalize naturally to the analogous

2D model, whose discussion we defer to Sec. 3.4.

Essentially all the required mathematical results stem from a beautiful and pow-

erful theorem of Nazarov [86, p. 5] combined with classical waterfilling for spectrum

allocation. We find it remarkable here firstly for its mathematical generality and el-

egance, which among other things allows the analysis to carry over to other quality

measures of possible interest such as MI. Secondly, Nazarov’s theorem is “effective” in

the sense of leading to aperture designs that can be computed in a reasonable amount

of time by our greedy algorithm.

To the best of our knowledge, our work here represents the first detailed study of

Nazarov’s theorem in an applied context. However, we do note that [21, pp. 9-11] has

identified other applied problems for which Nazarov’s theorem provides conceptual

clarity and/or solutions.
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3.2 Model

We first describe our model, and discuss how it differs from that in [125]. We use

the standard Poisson model of classical optics for photon counting, and emphasize its

dependence on the exposure time 𝑡. Another perspective is that of far-field, incoherent

illumination and the study of the intensity/power transfer, see e.g. [67, Chapter 7]

for more information and physical justification. The analysis of MI under Poisson

models is cumbersome, and even with mean square error (MSE) it is often unclear

how to achieve optimal MSE in practice. As such, the standard estimation process is

linear; indeed, the work of [1, 37] used correlation decoders. In fact, both [1, 37] give

beautiful analog realizations of such a decoder. Accordingly, we emphasize LMMSE.

We note that if one used a Gaussian model instead, LMMSE is the same as MSE.

Furthermore, under a Gaussian model, MSE is in turn essentially equivalent to MI in

the low SNR limit [106, 59]. LMMSE depends purely on first and second moments,

so in our mathematical study we do not emphasize the specific Poisson statistics.

Let 𝑓 denote the intensities of the unknown 1D scene of length 𝑛 of expected total

power 𝐽 . Let E[𝑓 ] = (𝐽/𝑛)⃗1,Cov[𝑓 ] = Q. We assume Q is circulant and diagonalized

as Q = F*
𝑛DF𝑛; F𝑛 is the unitary discrete Fourier transform (DFT) matrix and

D = diag(𝑑). The measurements at the imaging plane are denoted 𝑦⃗𝑗, 𝑗 ∈ [𝑛] and

the 𝑛 × 𝑛 transfer matrix A models the aperture. We assume its entries all satisfy

0 ≤ A𝑗𝑖 ≤ 1/𝑛 to model that the light can not be redirected, and
∑︀

𝑗 A𝑗𝑖 ≤ 1 to

model local conservation of power. An ideal, perfectly focused, lens may be treated

in this setup by A = I, as it redirects light perfectly.

We assume A𝑗𝑖 = (1/𝑛)⃗𝑎𝑖−𝑗 (mod 𝑛) for a 𝑎⃗ ≥ 0, i.e. A is circulant. Let 𝜌(⃗𝑎) =

(1/𝑛)
∑︀

𝑖 𝑎⃗𝑖 be the transmissivity of the aperture. The noise component is denoted

by 𝑧⃗ and its statistics are given by E[𝑧⃗] = 0,Cov[𝑧⃗] = (𝑡(𝑊 + 𝐽𝜌)/𝑛)I, where 𝑊,𝐽

correspond to thermal and shot noise respectively, and 𝑡 is the exposure time. With

these, our measurement model is then given by 𝑦⃗𝑗 = 𝑡
∑︀

𝑖A𝑗𝑖𝑓𝑖 + 𝑧⃗𝑗, which leads to
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the following expression for the LMMSE of estimating 𝑓 from 𝑦⃗.

𝑚(𝑛, 𝑡,𝑊, 𝐽, 𝑑, 𝑎⃗) =
𝑛−1∑︁
𝑖=0

1

1

𝑑𝑖
+ 𝑡|̂⃗︀𝑎𝑖|2

𝑛(𝑊+𝐽𝜌(𝑎⃗))

. (3.1)

Here, ̂⃗︀𝑎 is the DFT of 𝑎⃗.

3.2.1 Background on linear estimation

We note that (3.1) is an entirely routine derivation for a reader well versed in estima-

tion/statistical signal processing. For a general reader, we provide some background

on minimum mean squared error estimation and then derive (3.1). Let x,y be a pair

of vector valued random variables. Let their means be well-defined and denoted by

x,y respectively. The goal is to estimate x from y, and the minimum squared error is

achieved by the conditional expectation E[x|y]. As we have discussed, this expression

is often intractable, and it is often convenient to restrict the form of the estimator.

We study linear estimators here, i.e. estimators of the form ̂︀x = 𝑊 (y − y) + 𝑏, and

we wish to minimize the expected squared error E[(̂︀x− x)𝑇 (̂︀x− x)].

In the development we shall assume x,y have finite second moments as well.

This assumption in turn ensures that the covariance matrices 𝐶x , E[(x − x)(x −

x)𝑇 ], 𝐶x,y , E[(x − x)(y − y)𝑇 ], 𝐶y,x , 𝐶𝑇
x,y, 𝐶y , E[(y − y)(y − y)𝑇 ] are all well-

defined. We shall also assume that 𝐶y is nonsingular.

We remind the reader of the well-known “orthogonality principle” in standard

Hilbert space theory. The orthogonality principle implies that the estimation error

of the optimal estimator ̂︀x − x is uncorrelated with any function 𝑔(y) of finite sec-

ond moment. For a good reference, we recommend for instance the treatment by

Luenberger [80, Chapter 3,4].

We first note that E[̂︀x] = x since the desired estimator must be unbiased (take

𝑔 = 1). We immediately get

𝑏 = x−𝑊y. (3.2)
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Thus it remains to determine 𝑊 . Taking 𝑔(y) = y − y, we have

E[(̂︀x− x)(y − y)𝑇 ] = 0,

⇒ E[(𝑊 (y − y) − (x− x))(y − y)𝑇 ] = 0,

⇒ 𝑊𝐶y − 𝐶x,y = 0,

⇒ 𝑊 = 𝐶x,y𝐶
−1
y .

We may now determine the error covariance matrix

𝐶𝑒 , E[(̂︀x− x)(̂︀x− x)𝑇 ]

= E[(̂︀x− x)(𝑊 (y − y) − (x− x))𝑇 ]

= 0 − E[(̂︀x− x)(x− x)𝑇 ]

= E[((x− x) −𝑊 (y − y))(x− x)𝑇 ]

= 𝐶x −𝑊𝐶y,x

= 𝐶x − 𝐶x,y𝐶
−1
y 𝐶y,x, (3.3)

where on the third line we used the orthogonality principle.

Let us now specialize to the situation here, where we have a linear observation

model y = 𝐴x + z, x, z are uncorrelated, and 𝐴 is a fixed matrix. Then, we have

𝐶y,x = E[(y − y)(x− x)𝑇 ]

= E[(𝐴(x− x) + (z− z))(x− x)𝑇 ]

= 𝐴E[(x− x)(x− x)𝑇 ] + E[(z− z)(x− x)𝑇 ]

= 𝐴𝐶x. (3.4)
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Similarly,

𝐶y = E[(y − y)(y − y)𝑇 ]

= E[(𝐴(x− x) + (z− z))(𝐴(x− x) + (z− z))𝑇 ]

= 𝐴E[(x− x)(x− x)𝑇 ]𝐴𝑇 + E[(z− z)(z− z)𝑇 ]

= 𝐴𝐶x𝐴
𝑇 + 𝐶z. (3.5)

Substituting eqs. (3.4) and (3.5) into (3.3), we have the formula

𝐶𝑒 = 𝐶x − 𝐶x𝐴
𝑇 (𝐴𝐶x𝐴

𝑇 + 𝐶z)
−1𝐴𝐶x. (3.6)

Now the expression for the LMMSE is simply tr(𝐶𝑒). In our context here, we

may use our assumption regarding the simultaneous diagonalization of all relevant

matrices by the Fourier basis to simplify (3.6) in terms of spectral content as follows.

Let us for convenience denote 𝛾 , 𝑡/(𝑛(𝑊 + 𝜌(⃗𝑎)𝐽)). We take (3.6) and rewrite it in

terms of eigenvalues 𝜆(𝑖) as

𝑛−1∑︁
𝑖=0

𝜆𝐶x(𝑖)𝜆𝐶z(𝑖)

𝜆𝐶x(𝑖)𝜆𝐴𝐴𝑇 (𝑖) + 𝜆𝐶z(𝑖)
. (3.7)

At this stage, we recall our assumptions and notation to see that 𝜆𝐶x(𝑖) = 𝑑𝑖 (the

prior on the scene), 𝜆𝐴𝐴𝑇 (𝑖) = 𝑡2|̂⃗︀𝑎𝑖|2/𝑛2 (observation period of 𝑡, and the formula for

eigenvalues of 𝐴𝐴𝑇 in terms of those for 𝐴), and 𝜆𝐶z(𝑖) = 𝑡2/(𝑛2𝛾) by our definition

of the notational convenience 𝛾 and the formulation of the noise model.

Plugging in the above into (3.7), we finally obtain

𝑛−1∑︁
𝑖=0

𝑑𝑖
𝑡2

𝑛2𝛾

𝑑𝑖
𝑡2|̂⃗︀𝑎𝑖|2
𝑛2 + 𝑡2

𝑛2𝛾

=
𝑛−1∑︁
𝑖=0

1

1

𝑑𝑖
+ 𝑡|̂⃗︀𝑎𝑖|2

𝑛(𝑊+𝐽𝜌(𝑎⃗))

,

which is nothing but (3.1) as claimed.
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3.2.2 Model clarifications and intuition

In general, we assume 𝑑𝑖 = (1/𝑛)𝑑(𝑖/𝑛) are 𝑛 equally spaced samples from a nonneg-

ative, bounded, continuous function 𝑑(𝑥) on [0, 1] with symmetry 𝑑(𝑥) = 𝑑(1−𝑥) and

normalized so that 𝑑(0) = 𝜃. For example, i.i.d. scenes correspond to 𝑑(𝑥) = 𝜃. We

note that our main result, Prop. 10, holds in greater generality. The above restriction

on the form of 𝑑 simply ensures correct physical scaling (invariant with respect to 𝑛)

of the variance of total scene intensity coming from an arbitrary direction.

It is instructive to compare an ideal lens to a mask with respect to (3.1), as a

function of exposure time. An ideal lens satisfies A = I, (i.e., 𝑎⃗ = (𝑛, 0, . . . , 0)).

Thus ̂⃗︀𝑎 = (𝑛, 𝑛, . . . , 𝑛). Then from (3.1), it can be readily seen that for a 𝑡 growing

arbitrarily slowly with 𝑛 (say 𝑡 = log(𝑛)), the LMMSE decays to 0 as 𝑛 → ∞. On

the other hand, the entry-wise restriction 𝑎⃗ ∈ [0, 1] that holds for a mask results

in a significant reduction in ‖̂⃗︀𝑎‖2. Due to this, in order to get an LMMSE that is

bounded away from the trivial
∫︀
𝑑(𝑥) d𝑥 (corresponding to 𝑡 = 0, 𝑛→ ∞), one needs

an exposure time that is Ω(𝑛). Of course, this is not surprising; there are strong

benefits to lenses when they are available. The need for long exposure times for

coded apertures is also a known phenomenon, consistent with the emphasis of [37] on

“hypothesis tests” between scenes as opposed to resolving full detail.

One way to interpret increased 𝑡 is that it reduces noise relative to the signal. All

our main results established in the sequel ( eqs. (3.9), (3.10) and (3.13)) show that one

can construct apertures that are guaranteed to be tight within a constant factor of 𝑡.

Under the above interpretation, what we establish rigorously is that our results are

tight to within a constant number (≈ 18.30) of dB, regardless of the scene correlation

structure given by 𝑑. This factor may be read off from 2𝑀(𝑛)2 of Prop. 10.
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3.3 Results

The goal of optimal aperture design (mathematically, optimal 𝑎⃗) is to minimize the

LMMSE formula subject to the scene model, denoted as

𝑚*(𝑛, 𝑡,𝑊, 𝐽, 𝑑) , min
𝑎⃗
𝑚(𝑛, 𝑡,𝑊, 𝐽, 𝑑, 𝑎⃗).

Let us first understand why the minimization above is a challenging problem.

Consider the even simpler problem in which the optimal transmissivity, say 𝜌0, is given

to us. Then, although 𝑎⃗ ∈ [0, 1], 𝜌(⃗𝑎) = 𝜌0 is a convex constraint, the LMMSE (3.1)

which we wish to minimize is neither convex nor quasiconvex in 𝑎⃗, since 1/(1 + 𝑐𝑥2)

as a function of 𝑥 lacks any of these behaviors.

In order to solve this problem, our general approach is as follows. First, we

use Parseval’s identity that relates time and frequency space. Under a fixed power

budget, it is easy to solve for the optimal spectrum allocation |̂⃗︀𝑎𝑖|2 by studying the

well-behaved and convex (as a function of 𝑥) 1/(1 + 𝑐𝑥) that has a solution given

by waterfilling (3.8). Next, we are faced with the “coefficient problem” of finding a

𝑎⃗ ∈ [0, 1] with given spectrum allocation. To address this, we appropriately apply a

theorem of Nazarov [86, p. 5]. An exposition of Nazarov’s work together with the

context he draws from (e.g., the geometric ideas of [16], along with the analytic ideas

of [33]) may be found in [15].

3.3.1 Lower bound

For notational ease, we let 𝛾 , 𝑡/(𝑛(𝑊 + 𝐽𝜌)) throughout.

We first derive a lower bound for LMMSE (3.1) based on waterfilling (see, e.g.,

[92, Thm 19.7]).

Lemma 21. Consider the convex program

inf∑︀
𝑃𝑖≤𝑃,𝑃𝑖≥0

𝑛−1∑︁
𝑖=1

1
1

𝑑𝑖
+ 𝛾𝑃𝑖

.
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Then the solution is given by a “water-level” 𝑇 implicitly governed by setting the

optimal 𝑃𝑖 =
(︁
𝑇 − 1

𝑑𝑖

)︁+
/𝛾, satisfying

∑︀𝑛−1
𝑖=1 𝑃𝑖 = 𝑃 .

Proof of Lemma 21. Let us associate Lagrange multipliers 𝜇𝑖 for the constraints 𝑃𝑖 ≥

0, and 𝜆 for the constraint
∑︀
𝑃𝑖 ≤ 𝑃 . Then we wish to minimize the Lagrangian

𝜆

(︃(︃
𝑛−1∑︁
𝑖=1

𝑃𝑖

)︃
− 𝑃

)︃
+

𝑛−1∑︁
𝑖=1

(︃
1

1

𝑑𝑖
+ 𝛾𝑃𝑖

− 𝜇𝑖𝑃𝑖

)︃
.

First order conditions yield

𝜆− 𝜇𝑖 =
𝛾(︁

1

𝑑𝑖
+ 𝛾𝑃𝑖

)︁2 , 𝜇𝑖𝑃𝑖 = 0.

Thus, for all 𝑖 where 𝑃𝑖 is not zero, 1/𝑑𝑖 +𝛾𝑃𝑖 = 𝑇 for some constant “water-level”

𝑇 , or in other words, for such 𝑖,

𝑃𝑖 =
𝑇 − 1

𝑑𝑖

𝛾
.

𝜆 can’t be zero for a nonzero 𝑃 , so by complementary slackness we see that
∑︀
𝑃𝑖 = 𝑃 .

This completes the proof.

Remark 5. The above convex program structure and associated “waterfilling” solution

occur in a wide variety of problems and is well known. For example, the reference

we provided [92, Thm 19.7] studies a similar problem to determine the capacity of a

parallel AWGN channel. In the AWGN context, [93] attributes the derivation to [64].

Mathematically, all that we did was replace the convex − log(1 + 𝑎𝑥) occuring in the

capacity problem by the convex 1/(1 + 𝑎𝑥) occuring here. We also note that a similar

problem arises in the context of bit allocation for quantizers (see, e.g., [52, 8.2]), who

attribute the solution (without the nonnegativity constraint) to [65].

At a high level, what Lemma 21 allows us to do is solve for the best possible

spectral allocation for coded apertures, assuming that one were able to set the levels

freely modulo Parseval’s equality relating time and frequency.
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What we do next is observe that the lack of redirection of light for an aperture

(essentially a 𝑙∞ constraint on 𝑎⃗) allows one to write a natural upper bound on the

𝑙2 norm of 𝑎⃗. The assumption on the lack of redirection of light turns into an upper

bound on the 𝑙2 norm of ̂⃗︀𝑎, and in turn allows us to apply Lemma 21. We give

an elementary and short treatment below that is sufficient for our purposes as will

become clear shortly. For the reader interested in the general conceptual framework,

we recommend the study of the Fourier operator norm in the 𝑙𝑝 → 𝑙𝑞 sense for which

there is a vast amount of material. One way to approach such a study is through

tracing the historical line through the classical Hausdorff-Young inequality [127], [61],

and the sharper Babenko-Beckner inequality [12], [17].

We accordingly have

Lemma 22. Let 𝑥𝑖 ∈ [0, 1], 1 ≤ 𝑖 ≤ 𝑛. Suppose
∑︀
𝑥𝑖 = 𝑟, where 0 ≤ 𝑟 ≤ 𝑛. Then,∑︀

𝑥2𝑖 ≤ ⌊𝑟⌋ + (𝑟 − ⌊𝑟⌋)2.

Proof of Lemma 22. Think of a “trading mass” operation that takes a pair of distinct

indices (𝑖, 𝑗), 𝑖 ̸= 𝑗, with 𝑥𝑖 ≤ 𝑥𝑗 without loss of generality, and replaces 𝑥𝑖 by 𝑥𝑖 − 𝜖,

𝑥𝑗 by 𝑥𝑗 + 𝜖 where 𝜖 ≥ 0. This trading mass operation preserves the sum at 𝑟, but if

𝜖 > 0, the sum of squares is strictly increased.

(𝑥𝑖 − 𝜖)2 + (𝑥𝑗 + 𝜖)2 = (𝑥2𝑖 + 𝑥2𝑗) + 2𝜖(𝜖+ 𝑥𝑗 − 𝑥𝑖)

> 𝑥2𝑖 + 𝑥2𝑗 .

In such an operation, we may chose 𝜖 as large as possible until one of the 𝑥𝑖, 𝑥𝑗 escapes

[0, 1], and we term that as the “full mass trade” acting on (𝑖, 𝑗).

Clearly any 𝑥 maximizing the sum of squares must be invariant under the “full

mass trade” across all pairs (𝑖, 𝑗), 𝑖 ̸= 𝑗. In particular, at optimality, we can have

at most one “intermediate” 𝑥𝑖 ∈ (0, 1). These properties characterize the possible

optimal vectors sufficiently to complete the proof.

For a less ad-hoc and more systematic proof, consider the set of vectors formed

by permuting the entries of (𝑟 − ⌊𝑟⌋, 1, 1, . . . , 1, 0, 0, . . . , 0) arbitrarily. These are the

extremal vectors of the convex hull formed by these vectors, which in fact encompasses
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the entire constraints space. For a convex maximization problem, it is sufficient to

examine the extremal vectors, and so we are once again done. One can view the first

proof as an “algorithmic” variant of the second.

Lemma 22 gives us the “power upper bound” that we need in order to employ

waterfilling (Lemma 21) and prove

Proposition 7. Let 𝑎⃗ satisfy 𝜌(⃗𝑎) = 𝜌. Then

𝑚(𝑛, 𝑡,𝑊, 𝐽, 𝑑, 𝑎⃗) ≥ 1
𝑛
𝜃

+ 𝛾𝑛2𝜌2
+

𝑛−1∑︁
𝑖=1

1
1

𝑑𝑖
+ 𝛾𝑃𝑖

. (3.8)

Here 𝑃𝑖 = (1/𝛾)(𝑇 −1/𝑑𝑖)
+ and total power 𝑃 =

∑︀𝑛−1
𝑖=1 𝑃𝑖 = 𝑛(⌊𝑛𝜌⌋+(𝑛𝜌−⌊𝑛𝜌⌋)2)−

𝑛2𝜌2. Also note 𝑃 ≤ 𝑛2𝜌(1−𝜌). We remark that (3.8) is sharp if and only if |̂⃗︀𝑎𝑖|2 = 𝑃𝑖

for 0 < 𝑖 < 𝑛.

Proof. Recall that 𝑑0 = 𝜃/𝑛, and that ̂⃗︀𝑎0 = 𝑛𝜌. This takes care of the first term. We

now turn to the nonzero frequencies. First, note that
∑︀

𝑖 𝑎⃗
2
𝑖 ≤ 𝑛(⌊𝑛𝜌⌋+ (𝑛𝜌−⌊𝑛𝜌⌋)2)

by Lemma 22. By Parseval’s identity, we immediately have
∑︀

𝑖
̂⃗︀𝑎2𝑖 ≤ 𝑛(⌊𝑛𝜌⌋ + (𝑛𝜌−

⌊𝑛𝜌⌋)2). We may substitute in ̂⃗︀𝑎0 = 𝑛𝜌 to get the expression for 𝑃 above. The

waterfilling Lemma 21 then gives the final expression.

The bound 𝑃 ≤ 𝑛2𝜌(1− 𝜌) is convenient as it allows us to get rid of the floors for

analytical study. We may readily derive it by

𝑛(⌊𝑛𝜌⌋ + (𝑛𝜌− ⌊𝑛𝜌⌋)2) − 𝑛2𝜌2 ≤ 𝑛(⌊𝑛𝜌⌋ + 𝑛𝜌− ⌊𝑛𝜌⌋) − 𝑛2𝜌2 ≤ 𝑛2𝜌(1 − 𝜌).

We used 0 ≤ 𝑥− ⌊𝑥⌋ ≤ 1 together with 𝑥2 ≤ 𝑥 on [0, 1] above.

Note that minimizing the right hand side over 𝜌 gives a lower bound on𝑚*(𝑛, 𝑡,𝑊, 𝐽, 𝑑).

The minimization task is trivial numerically, but in general difficult analytically. We

denote this optimal 𝜌 by 𝜌* henceforth.
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3.3.2 Upper bound

Our goal here has been set from (3.8). Conceptually, the design issue is finding a

𝑎⃗ ∈ [0, 1] with prescribed lower bounds |̂⃗︀𝑎𝑖|2 ≥ 𝑃𝑖. In general, it is impossible to find

such a 𝑎⃗ given arbitrary 𝑃𝑖 satisfying the power bound of Proposition 7. Therefore,

our lower bound (3.8) is not sharp in all settings. However, it should be noted that

sharp cases do exist. Perhaps the conceptually simplest example is the analog of (3.8)

for a lens, where our bound is sharp.

Our general approach is to back off by a factor 𝐶 and obtain a 𝑎⃗ ∈ [0, 1] with

|̂⃗︀𝑎𝑖|2 ≥ 𝑃𝑖/𝐶. What we do next is address how we can guarantee such a 𝐶 universally

across 𝑛, 𝑑. We shall move from simpler to more complex situations, and accordingly

start off with i.i.d. scenes, where for infinitely many 𝑛 one does not need the full

generality of Nazarov’s solution.

i.i.d. scenes

As clarified in our model, i.i.d. scenes correspond to 𝑑(𝑥) = 𝜃, a constant. Examining

the lower bound (3.8), we see that the waterfilling solution prescribes a 0, 1 sequence

with uniform spectrum allocation after the DC term (“spectrally flat sequences”). As

already noted in [44, 125], one can certainly construct such spectrally flat sequences

for infinitely many values of 𝑛, as long as they are at least asymptotically “unbiased”

with 𝜌 = 1/2 − 𝑜(1). The performance of the apertures corresponding to these

spectrally flat sequences meets the lower bound (as 𝑛 → ∞) as long as the optimal

𝜌* is 1/2 − 𝑜(1) for the given 𝑡,𝑊, 𝐽 .

We now describe how one constructs spectrally flat sequences with 𝜌 = 1/2−𝑜(1).

Our treatment here is brief and non-comprehensive. The construction we present here

is based on elementary number theory, and can be attributed to Gauß [51].

First, let us reframe the problem of spectral flatness of a {0, 1} sequence of length

𝑛 that we denote 𝑎⃗. Observe that |̂⃗︀𝑎𝑖|2 occurs as the Fourier transform of the (cyclic)

autocorrelation sequence 𝑏𝑗 ,
∑︀𝑛−1

𝑖=0 𝑎𝑖𝑎𝑖−𝑗, where we wrap indices modulo 𝑛. It thus

clearly suffices to ensure that the autocorrelation sequence is constant for 1 ≤ 𝑗 ≤
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𝑛 − 1. One can rephrase this as asking for a subset of 𝒮 ⊆ Z/𝑛Z (corresponding

to the ones) with the property that the nonzero pair differences 𝑖 − 𝑗 corresponding

to pairs (𝑖, 𝑗) ∈ 𝒮 × 𝒮 occur equally among 1, 2, . . . , 𝑛 − 1. For reasons that are

intuitively clear from the physical situation, and will become mathematically clear

shortly, we also want a “nontrivial” transmissivity, i.e. 𝜌 ∈ (0, 1) as 𝑛 grows. Indeed,

the construction of Gauß is “unbiased” and achieves 𝜌 = 1/2 − 𝑜(1). We will first

describe Gauß’s construction below, and then show how one can generalize it and

obtain 𝜌 ∈ {1/4, 1/8}.

Let 𝑛 = 𝑝 be a prime. Let us call 𝑎 ∈ Z/𝑛Z a quadratic residue if 𝑥2 = 𝑎 has a

solution in Z/𝑛Z, otherwise we call 𝑎 a quadratic nonresidue. To make sure we are

on the same page, 0, 1 are always quadratic residues.

We assume the reader is familiar with Euler’s criterion.

Lemma 23 (Euler). Let 𝑎 ̸= 0 ∈ Z/𝑝Z, where 𝑝 is an odd prime. Then, in Z/𝑝Z,

𝑎
𝑝−1
2 =

⎧⎪⎨⎪⎩1 if a is a quadratic residue

−1 otherwise.

Proof. A proof may be found in almost any elementary number theory book, such as

the freely available [108, Propn. 4.2.1].

Using Euler’s criterion (Lemma 23), we may now easily prove the spectral flatness

of Gauß’s construction [51, Art. 356].

Theorem 7 (Gauß). Let 𝑛 be a prime 𝑝 of the form 4𝑘 + 3. Let 𝑎⃗𝑖 = 1 if 𝑖 is a

quadratic residue and 𝑖 ̸= 0, 0 otherwise. Then 𝑎⃗ is spectrally flat, i.e. |̂⃗︀𝑎𝑖| is constant

for 1 ≤ 𝑖 ≤ 𝑛− 1.

Proof of Theorem 7. Taking 𝑎 = −1 in Euler’s criterion, we see that −1 is a quadratic

nonresidue. Observe also that Euler’s criterion immediately implies that the product

of two quadratic nonresidues is a quadratic residue, a nonresidue and a residue is a

nonresidue, and finally a residue and a residue is a residue.
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Recall by our general discussion regarding autocorrelations and spectral flatness

that our task amounts to showing that 𝑟𝑎 − 𝑟𝑏 = 𝜆 has the same number of solutions

in 𝑟𝑎, 𝑟𝑏 across all 𝜆 ̸= 0 ∈ Z/𝑛Z, where 𝑟𝑎, 𝑟𝑏 ̸= 0 are quadratic residues.

Suppose 𝜆 is a quadratic residue. Note that 𝑟𝑎 − 𝑟𝑏 = 𝜆 ↔ 𝑟𝑎𝑟
−1
𝑏 − 𝜆𝑟−1

𝑏 = 1,

where inverses are taken in the multiplicative group (Z/𝑛Z)*. This observation gives

a bijection between difference pairs for 𝜆 and pairs for 1. Thus the number of solutions

is the same across all 𝜆 that are quadratic residues.

Now, suppose 𝜆 is a quadratic nonresidue. Then −𝜆 is a quadratic residue, and

we have 𝑟𝑎 − 𝑟𝑏 = 𝜆 ↔ 𝑟𝑏 − 𝑟𝑎 = −𝜆. Thus the number of solutions for quadratric

residues is the same as those for nonresidues when we combine with the preceding

paragraph. This completes the proof.

Remark 6. The astute reader may have observed that we did not actually compute

the DFT of Gauß’s quadratic residue sequence, as we did not need to determine the

phase for checking spectral flatness. By comparsion, Gauß [51, Art. 356] in fact

computed the DFT of such a sequence (with the phase information) explicitly in both

the cases 𝑝 = 4𝑘+ 1 and 𝑝 = 4𝑘+ 3. A popular approach for performing the full DFT

computation due to Dirichlet is the Poisson summation formula, see, e.g., [32, Ch.

2].

Now that we have established the existence of “unbiased” spectrally flat sequences

(at least for some 𝑛), a natural question is how good is using an “unbiased” spectrally

flat sequence when 𝜌* ̸= 1/2? The answer is given in the following

Proposition 8. Let 𝜃,𝑊, 𝐽 be fixed and let 𝑑 = (𝜃/𝑛)⃗1. Then for infinitely many 𝑛,

there exists a 𝑎⃗ ∈ [0, 1] such that

𝑚(𝑛, 2𝑡,𝑊, 𝐽, 𝑑, 𝑎⃗) ≤ 𝑚*(𝑛, 𝑡,𝑊, 𝐽, 𝑑). (3.9)

In other words, “unbiased” spectrally flat sequences are always guaranteed to

achieve optimal LMMSE at the expense of increasing the exposure time 𝑡 by a factor

of at most 2. In the sequel, we show how one can reduce this factor even further.
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The improvement of the constant factor 2 is achieved by using spectrally flat

sequences with 𝜌 = 1/8−𝑜(1) and 𝜌 = 1/4−𝑜(1) in combination with 𝜌 = 1/2−𝑜(1),

and allows us to refine 2 to 8/7. Intuitively, a lower 𝜌 helps with scenarios where shot

noise dominates over thermal noise, and a higher 𝜌 when thermal noise dominates

shot noise. One therefore expects that having multiple constructions with different 𝜌

helps with aperture selection, tailored to the specific shot noise versus thermal noise

scenario at hand. If one had other values of 𝜌 with spectrally flat constructions,

one could possibly reduce the constant factor further, depending on the calculation

presented in the upcoming Lemma 24.

The construction of spectrally flat sequences for 𝜌 ∈ {1/4, 1/8} is based on well-

established cyclotomic number computations originating in [51] and developed further

in [38] in number theory. 𝜌 = 1/4 corresponds to quartic residues [24], and 𝜌 = 1/8

corresponds to octic residues [74]. It should be emphasized, however, that in contrast

to the case in which 𝜌 = 1/2, the existence of such sequences for infinitely many values

of 𝑛 is not guaranteed, because no single-variable quadratic taking on infinitely many

primes is known [117].

Of perhaps greater importance is the fact that the octic residue constructions

of [74] rely upon primes that come from a second order linear recurrence with rather

large coefficients, arising as the solutions of Brahmagupta-Pell equations. There is

thus a paucity of such constructions; indeed [74] gives only two such 𝑛 below 109,

namely 𝑛 = 73 and 𝑛 = 26041. On the other hand, the quartic residue constructions

are reasonably numerous, with over 150 of them available below 107. Even restricting

ourselves to the quartic residues allows us to tighten from 2 to 4/3. Summarizing all

of the above, we have

Proposition 9. Let 𝜃,𝑊, 𝐽 be fixed and let 𝑑 = (𝜃/𝑛)⃗1. Then for some values of 𝑛

that exist even beyond, e.g., 109, there exists a 𝑎⃗ ∈ [0, 1] such that:

𝑚(𝑛, (8/7)𝑡,𝑊, 𝐽, 𝑑, 𝑎⃗) ≤ 𝑚*(𝑛, 𝑡,𝑊, 𝐽, 𝑑). (3.10a)

Moreover, for many (> 150 for 𝑛 < 107) values of 𝑛 that exist even beyond, e.g., 109,
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there exists a 𝑎⃗ ∈ [0, 1] such that

𝑚(𝑛, (4/3)𝑡,𝑊, 𝐽, 𝑑, 𝑎⃗) ≤ 𝑚*(𝑛, 𝑡,𝑊, 𝐽, 𝑑). (3.10b)

Before turning to the proof, we have a few words to say about the constants

2, 4/3, 8/7. The astute reader may have noticed that they were obtained for 𝜌 ∈

{1/2, 1/4, 1/8}, and may have also noticed the 2𝑘/(2𝑘 − 1) pattern. One may thus

hope for this pattern to continue if one could (hypothetically) construct spectrally

flat sequences with 𝜌 = 1/16 as well. Unfortunately, this is not the case. In fact, the

values of these “magic” constants come from a two variable optimization that is readily

carried out on a computer, but is somewhat painful and certainly unilluminating to

do by hand. We obtain the constants in

Lemma 24. Let 𝑎 > 0, and let

𝑓𝑎(𝜌) : [0, 1] → R ,
𝜌(1 − 𝜌)

𝑎+ 𝜌
.

Let

𝑀(𝑎,ℬ) , max
𝑥∈[0,1]

𝑓𝑎(𝑥)

max𝜌∈ℬ 𝑓𝑎(𝜌)
.

Then

𝑀

(︂
𝑎,

{︂
1

2

}︂)︂
≤ 2,

𝑀

(︂
𝑎,

{︂
1

2
,
1

4

}︂)︂
≤ 4

3
,

𝑀

(︂
𝑎,

{︂
1

2
,
1

4
,
1

8

}︂)︂
≤ 8

7
.

Proof of Lemma 24. See Appendix A.

We also note that the constants are rather small, especially compared with those

arising from the general solution based on Nazarov’s theorem as will become clear

later. A high level takeaway from Lemma 24 is that having different aperture designs

with different transmissivities allows one greater design flexibility, and thus allows one
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to tailor the choice to the relative shot/thermal noise levels. The precise numerical

factors are much less important.

One may wonder what the optimal (in the min-max sense) choice of transmissivity

is within our model. After all, the mathematics of minimizing the multiplicative factor

subject to a single choice of 𝜌 is clear. Along the lines of the proof of Lemma 24, this

is a straightforward calculus exercise. The answer turns out to be 𝜌 = 1/4, yielding a

factor of 4/3. In other words, in the notation of Lemma 24, we have for any 𝜌 ∈ [0, 1],

𝑀

(︂
𝑎,

{︂
1

4

}︂)︂
≤ 4

3
≤ sup

𝑎
𝑀 (𝑎, {𝜌}) . (3.11)

We do not recommend that the reader pays too much attention to the above (3.11).

After all, in general, we believe such questions are best left to actual physical tests

as there are a number of factors our model ignores.

We now turn to the proof of Props. 8, 9.

Proof of Props. 8, 9. Recall that we wish to use spectrally flat sequences. First, we

note that the indicator/characteristic function of the “difference sets” of [24, 74] are in

our language spectrally flat sequences. The constant factor is given by the following

single variable optimization. In view of (3.8), let 𝑓𝑎(𝜌) = (𝜌(1 − 𝜌))/(𝑎 + 𝜌) defined

on [0, 1]; 𝑎 corresponds to 𝑊/𝐽 . The numerator comes from the power bound, the

denominator from the noise penalty. Then, 𝑀(𝑎, 𝜌) = sup𝑥 𝑓𝑎(𝑥)/𝑓𝑎(𝜌) is the multi-

plicative loss factor for a fixed 𝑊/𝐽 and fixed 𝜌 ∈ {0.125, 0.25, 0.5}. One may then

optimize over 𝜌, 𝑎 to get the constant (3.10a) via Lemma 24. This proof, modified

to 𝜌 ∈ {0.25, 0.5} and 𝜌 ∈ {0.5}, also yields (3.10b) and (3.9) respectively, again

by the computations of Lemma 24. The fact that there are infinitely many 𝑛 for

𝜌 = 0.5 − 𝑜(1) follows from the quadratic residue construction together with the well

known fact that there are infinitely many primes 𝑝 = 4𝑘+3 (see, e.g., [10, Ch. 7]).

Correlated scenes

We now turn to correlated scenes. Here the waterfilling is nontrivial, and prescribes an

unequal spectrum allocation. We therefore invoke Nazarov’s solution to the coefficient
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problem [86, p. 5], and also provide a statement here specialized to the DFT and 𝑙∞

that we use.

Nazarov’s theorem [86, p. 5] is presented in a very elegant and concise manner.

We do not know of any nontrivial improvements to it, either in exposition or in power.

The proof is sufficiently short that we present it here. We caution the reader that

although short, this proof is certainly nontrivial and can be a bit mysterious. In fact,

a lot of Nazarov’s original paper [86] is devoted to “unravelling” the mysterious steps,

as alluded to in the epigraph.

Consider the problem stated in the epigraph, which is Tarski’s famous plank prob-

lem 2. A strip is a region enclosed between two parallel hyperplanes. The width of

a convex body is defined as the width of the narrowest strip containing it. Tarski

asked whether given a convex set 𝐵 ∈ R𝑛, is it possible to cover it by several strips

of total width less than the width of 𝐵? The answer is no, but it was surprisingly

difficult to prove. Nevertheless, Bang’s solution [16] is very short (2 pages) and com-

pletely elementary! Nazarov includes Bang’s solution in his paper [86] for the reader’s

convenience.

Let us think about the nature of the plank problem and why one might see some

links to the coefficient problem. A strip centered at the origin may be written as {𝑥 :

|⟨𝑥, 𝜓⟩| ≤ 𝑎}, where 𝜓 is a unit vector. Thus a point 𝑦 in some convex set 𝐵 that isn’t

covered by a collection of strips with unit normals 𝜓1, . . . , 𝜓𝑛 and coefficients 𝑎1, . . . , 𝑎𝑛

must have large coefficients with respect to all these vectors simultaneously. As such,

it is not unreasonable to expect that the methods of Bang [16] that understood

(and in fact explicitly constructed) points 𝑦 that are not covered by the strips could

potentially be used to construct vectors that have large coefficients with respect to an

orthonormal basis. The problem of constructing such vectors with large coefficients

ties in well with the precise design problem we face here based on the belief that

waterfilling should guide the spectral allocation.

It is one thing to spot the above heuristic link between covering a set by strips and

2The problem apparently first appeared in print in 1932. See Bang’s original paper [16] for a
reference and historical remarks.
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the coefficient problem, a nontrivial ask in of itself, and another to actually solidify

the link. Nazarov succeeded in [86], and we present a fruit of his labor in

Theorem 8 (Nazarov). Let 𝑇 be a measure space with probability measure 𝜇. Let

𝜓𝑗 : 𝑇 → R be an at most countable system of functions satisfying

⃒⃒⃒⃒
⃒∑︁

𝑗

𝑐𝑗𝜓𝑗

⃒⃒⃒⃒
⃒
2

≤

(︃∑︁
𝑗

𝑐2𝑗

)︃ 1
2

,

for any 𝑐𝑗 ∈ R. Suppose 2 ≤ 𝑝 ≤ ∞, and let 𝑞 be the conjugate exponent to 𝑝, i.e.,

𝑝−1 + 𝑞−1 = 1. Assume

∀𝑗, |𝜓𝑗|𝑞 ≥ 𝛽 > 0.

Let 0 ≤ 𝑝𝑖 satisfy
∑︀

𝑖 𝑝𝑖 = 1. Then there exists 𝑏 ∈ 𝑙𝑝(𝑇 ) with

|𝑏|𝑝 ≤
(︂

3𝜋

2

)︂1− 2
𝑝

𝛽−2,

such that

∀𝑗, |⟨𝑏, 𝜓𝑗⟩| ≥
√
𝑝𝑗.

Here, inner products are defined with respect to the probability measure 𝜇 by

⟨𝑓, 𝑔⟩ ,
∫︁
𝑇

𝑓𝑔𝑑𝜇.

Proof of Theorem 8. Let 𝜖 ∈ (±1,±1, . . . ) 3, and define

𝑓𝜖 ,
∑︁
𝑗

𝜖𝑗
√
𝑝𝑗𝜓𝑗.

Define Φ(𝑥) via

Φ′′(𝑥) = (1 + 𝑥2)
2
𝑝
−1,Φ(0) = Φ′(0) = 0.

Such a function exists and is uniquely determined by the existence and uniqueness
3Nazarov calls 𝜖 a “sign cortège”.
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theorem for differential equations.

Now the integral 𝐼(𝑓) ,
∫︀
𝑇

Φ(𝑓)𝑑𝜇 is well defined and continuous in 𝑙2(𝑇 ). Since

the family {𝑓𝜖} is compact in the topology of 𝑙2(𝑇 ), one can find a cortège 𝜖* such

that 𝑓𝜖* maximizes 𝐼(𝑓) over all 𝑓𝜖.

Now consider the cortège obtained by “flipping” a single sign, and accordingly

define “bit-flipped” 𝑓𝑗 = 𝑓𝜖* − 2𝜖*𝑗
√
𝑝𝑗𝜓𝑗. By the mean value theorem and our choice

of 𝜖*, we have

0 ≤
∫︁
𝑇

(Φ(𝑓𝜖*) − Φ(𝑓𝑗))𝑑𝜇

=

∫︁
𝑇

Φ′(𝑓𝜖*)(𝑓𝜖* − 𝑓𝑗)𝑑𝜇+ (1/2)

∫︁
𝑇

Φ′′(𝑔)(𝑓𝜖* − 𝑓𝑗)
2𝑑𝜇,

where 𝑔 lies between 𝑓, 𝑓𝑗 pointwise. Recalling the definition of 𝑓, 𝑓𝑗, we obtain⃒⃒⃒⃒∫︁
𝑇

Φ′(𝑓𝜖*)𝜓𝑗𝑑𝜇

⃒⃒⃒⃒
≥ √

𝑝𝑗

∫︁
𝑇

Φ′′(𝑔)𝜓2
𝑗𝑑𝜇. (3.12)

At this stage, the path forward is as follows. We will use a (possibly scaled)

version of Φ′(𝑓𝜖*) as the desired 𝑏. In order to do so, we will accomplish two tasks:

1. Give a uniform lower bound on
∫︀
𝑇

Φ′′(𝑔)𝜓2
𝑗𝑑𝜇. We claim that 𝛽23

2
𝑝
−1 works.

2. Show that Φ′(𝑓𝜖*) ∈ 𝑙𝑝(𝑇 ). We claim that |Φ′(𝑓𝜖*)|𝑝 ≤
(︀
𝜋
2

)︀1− 2
𝑝 .

Let us look at the first task. Here, recall that Φ′′(𝑥) = (1 +𝑥2)
2
𝑝
−1, so by Hölder’s

inequality 4, we have

(︂∫︁
𝑇

Φ′′(𝑔)𝜓2
𝑗𝑑𝜇

)︂ 𝑞
2
(︂∫︁

𝑇

(1 + 𝑔2)𝑑𝜇

)︂1− 𝑞
2

≥
(︂∫︁

𝑇

|𝜓𝑗|𝑞𝑑𝜇
)︂
.

But
∫︀
𝑇

(1 + 𝑔2)𝑑𝜇 ≤
∫︀
𝑇

(1 + 𝑓 2
𝜖* + 𝑓 2

𝑗 )𝑑𝜇 = 3, so
∫︀
𝑇

Φ′′(𝑔)𝜓2
𝑗𝑑𝜇 ≥ 𝛽23

2
𝑝
−1.

4Historical note: Although commonly called Hölder’s inequality, Rogers discovered it in 1888 [99]
before Hölder in 1889 [63]. Henceforth we follow the common convention.

104



Now for the second task. We give an upper bound on |Φ′(𝑥)| by Hölder’s inequality.

|Φ′(𝑥)| =

∫︁ |𝑥|

0

(1 + 𝑠2)
2
𝑝
−1𝑑𝑠 ≤

(︃∫︁ |𝑥|

0

𝑑𝑠

)︃ 2
𝑝
(︃∫︁ |𝑥|

0

(1 + 𝑠2)−1𝑑𝑠

)︃1− 2
𝑝

≤
(︁𝜋

2

)︁1− 2
𝑝 |𝑥|

2
𝑝 .

Thus

|Φ′(𝑓𝜖)|𝑝 ≤
(︁𝜋

2

)︁1− 2
𝑝
,

completing the second task.

Take 𝑏 = 31− 2
𝑝𝛽−2Φ′(𝑓𝜖*) to complete the proof.

Remark 7. We note that the constant 3𝜋/2 for 𝑝 = ∞ is not sharp and may be

improved. A cheap way of doing this is studying the family of functions Φ𝑏(𝑥) governed

by Φ′′
𝑏 (𝑥) = 1/(1 + 𝑏𝑥2) and repeating Nazarov’s argument. It turns out that 𝑏 = 1/2

optimizes the constant in this family, and yields the very modest improvement of

3𝜋/2 →
√

2𝜋.

We return to our question of coded aperture design, the associated Fourier analysis

on Z/𝑛Z, and specialize Nazarov’s theorem 8 to such a situation. First, let us define

inner products with respect to the uniform probability distribution on {0, 1, . . . , 𝑛−1}.

Let 0 ≤ 𝑖, 𝑗 ≤ 𝑛−1, and let 𝜓𝑗 be a orthonormal basis for the DFT on real sequences.

Explicitly, let ℎ = ⌈(𝑛 − 1)/2⌉, 𝜔 = 2𝜋/𝑛. Let 𝜓0(𝑖) = 1, 𝜓𝑗(𝑖) =
√

2 cos(𝜔𝑗𝑖) for

0 < 𝑗 < ℎ, 𝜓𝑗(𝑖) =
√

2 sin(𝜔𝑗𝑖) for ℎ < 𝑗 < 𝑛. If 𝑛 is even, let 𝜓ℎ(𝑖) = cos(𝜔ℎ𝑖),

otherwise 𝜓ℎ(𝑖) =
√

2 cos(𝜔ℎ𝑖). Finally, let 𝛽(𝑛) = min𝑗 |𝜓𝑗|1.

Corollary 7 (Nazarov). Let 𝑀(𝑛) = ((3𝜋)/2)𝛽(𝑛)−2. Let 0 ≤ 𝑝0, 𝑝1, . . . , 𝑝𝑛−1 be

such that
∑︀
𝑝𝑗 = 1. Then there exists a 𝑏⃗ ∈ [−𝑀(𝑛),𝑀(𝑛)] with |⟨⃗𝑏, 𝜓𝑗⟩|2 ≥ 𝑝𝑗 for

all 0 ≤ 𝑗 ≤ 𝑛− 1.

Proof of Corollary 7. Take 𝑝 = ∞ and use 𝜓𝑖 as an orthonormal basis in Nazarov’s

Theorem 8.

With Corollary 7 in hand, we are able to reach a far more general version of

Prop. 8, 9 valid for any 𝑛 and any scene prior 𝑑. Also, in Sec. 3.3.3 we show how to
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construct sequences that achieve our goal of being guaranteed to lie within a constant

(independent of 𝑛, 𝑑) factor of optimal sequences. At the moment, we know that their

existence is guaranteed by Corollary 7.

Proposition 10. For all 𝑛, 𝑡,𝑊, 𝐽, 𝑑, there exists a 𝑎⃗ ∈ [0, 1] such that

𝑚(𝑛, 2𝑀(𝑛)2𝑡,𝑊, 𝐽, 𝑑, 𝑎⃗) ≤ 𝑚*(𝑛, 𝑡,𝑊, 𝐽, 𝑑). (3.13)

Furthermore, we have

𝑀(𝑛) ∈ [(3𝜋3)/16 + 𝑜(1), 3𝜋 + 𝑜(1)]. (3.14)

The justification of the tightness of (3.13) lies in establishing (3.14), which we do

first. The phenomenon is captured by the factorization of 𝑛, with the best, that is

the largest, 𝛽 occurring for 𝑛 prime, and the worst occuring for 𝑛 divisible by 4.

In order to elucidate this behavior, we first establish the following

Lemma 25. Let 𝑛 ≥ 4 be a natural number, and let 𝜔 , 2𝜋/𝑛. Consider 𝐴𝑛, 𝐵𝑛

defined via

𝐴𝑛 ,
1

𝑛

𝑛−1∑︁
𝑘=0

| cos(𝜔𝑘)|

𝐵𝑛 ,
1

𝑛

𝑛−1∑︁
𝑘=0

| sin(𝜔𝑘)|.

Then, for 𝑛 ≥ 4,

𝐴𝑛, 𝐵𝑛 ≥ 1

2
,

𝐴𝑛, 𝐵𝑛 =
2

𝜋
+𝑂

(︂
1

𝑛

)︂
.

Furthemore, 1/2 is attained at 𝑛 = 4 only.
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Proof of Lemma 25. We have the well known triangle inequality written as

||𝑥| − |𝑦|| ≤ |𝑥− 𝑦|.

Thus, we have

|| sin(𝑥)| − | sin(𝑦)|| ≤ | sin(𝑥) − sin(𝑦)| ≤
(︂

sup
𝑥

| sin′(𝑥)|
)︂
|𝑥− 𝑦| = |𝑥− 𝑦|.

Similarly, we get || cos(𝑥)| − | cos(𝑦)|| ≤ |𝑥 − 𝑦|. As such, by classical results on the

comparison of a (left) Riemann sum with the definite integral (see e.g. [100, Ch. 6]),

we get ⃒⃒⃒⃒
𝐴𝑛 −

∫︁ 1

0

| cos(2𝜋𝑥)|𝑑𝑥
⃒⃒⃒⃒
≤ 2𝜋

𝑛
,⃒⃒⃒⃒

𝐵𝑛 −
∫︁ 1

0

| sin(2𝜋𝑥)|𝑑𝑥
⃒⃒⃒⃒
≤ 2𝜋

𝑛
.

The conceptual part of the proof is completed by the above discussion. The rest

depends on the following exercise, that we recommend performing on a computer:

compute 𝐴𝑛, 𝐵𝑛 up to say 𝑛 = 10000, and check the minimum, which happens to

occur at 𝑛 = 4. For 𝑛 > 10000, 𝐴𝑛, 𝐵𝑛 are certainly within say 0.01 of the asymptotic

2/𝜋 ≈ 0.6366 established above.

Remark 8. Our published work [8] had some remarks regarding Euler-Maclaurin

summation in the proof sketch given there. The point we were emphasizing there

is that Lemma 25 and similar such statements are entirely routine matters that fall

under the general umbrella of Euler-Maclaurin summation, which provides an asymp-

totic expansion for the difference between a sum and an integral in terms of higher

derivatives evaluated at the endpoints. However, the function | cos(𝑥)| has annoying

discontinuities in the first derivative. Nevertheless, such matters are also entirely

routine and can be handled in numerous ways. Our work [8] gave an ad-hoc one via

smoothing out the discontinuities with splines.

We came up with the much clearer and simpler approach via the triangle inequal-

107



ity (or more generally the “modulus of continuity”) after publication. Nevertheless,

we still believe that Euler-Maclaurin summation is well worth understanding for the

following reasons.

1. The reader may justifiably view our use of the triangle inequality as a mere

trick that allowed us to get what we need and may thus yearn for a conceptual

framework. Euler-Maclaurin summation provides one route.

2. The reader may wish to obtain fine grained control on the error terms that

we simply lumped into the 𝑂(1/𝑛) of Lemma 25. Euler-Maclaurin gives a full

asymptotic expansion.

We therefore recommend [56, Sec. 9.5] for an easy to read treatment suitable for a wide

audience, and/or a blog post of Tao [111] for an exposition at a more sophisticated

level together with applications to number theory.

With the routine Lemma 25 in hand, we have the following Lemma which estab-

lishes (3.14).

Lemma 26. Let 𝛽(𝑛) denote the 𝑙1 lower bound of Nazarov’s theorem 8, specialized

to the real orthonormal basis 𝜓𝑗 for the DFT defined earlier. Then,

𝛽(𝑛) ∈

[︃
1√
2

+ 𝑜(1),
2
√

2

𝜋
+ 𝑜(1)

]︃

as 𝑛→ ∞. Moreover, if we restrict to 𝑛 being prime,

𝛽(𝑛) =
2
√

2

𝜋
+ 𝑜(1).

Proof of Lemma 26. Let us first examine the case in which 𝑛 = 𝑝, where 𝑝 is a prime.

Then, for any 𝑗 ̸= 0, 𝑗𝑘 sweeps over {0, 1, . . . , 𝑝 − 1}, modulo 𝑝 as 𝑘 sweeps over

{0, 1 . . . , 𝑝− 1}. Thus, we are examining the Riemann sum approximation

1

𝑝

𝑝−1∑︁
𝑘=0

cos

(︂
2𝜋𝑘

𝑝

)︂
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to
∫︀ 1

0
| cos(2𝜋𝑥)|𝑑𝑥 = 2/𝜋. The 𝑙2 norm of cos(2𝜋𝑥) on [0, 1] is 1/

√
2, and we may

invoke Lemma 25 to complete the proof.

The composite case is slightly more involved, as it needs to take into account the

divisor structure of 𝑛, which prevents such symmetry of the cosine vectors. What we

mean by this is the following. Consider the basic term 𝑗𝑘/𝑛, where 𝑗 is fixed, and 𝑘

varies over 0, 1, . . . , 𝑛−1. We may divide by the greatest common divisor (gcd) (𝑗, 𝑛)

to equivalently study 𝑗′𝑘/𝑛′, where 𝑗′, 𝑛′ are coprime ((𝑗′, 𝑛′) = 1). Now as 𝑘 varies

over 0, 1, . . . , 𝑛−1, 𝑘 varies over 0, 1, . . . , 𝑛′−1, modulo 𝑛′, with each residue occuring

the same number of times. As 𝑗′, 𝑛′ are coprime, 𝑗′𝑘 also varies over 0, 1, . . . , 𝑛′ − 1,

modulo 𝑛′, with each residue occuring the same number of times. Thus, one is simply

looking at a Riemann sum approximation to an integral number (𝑛/𝑛′) of periods of

| cos(2𝜋𝑥)|. Thus we may once again invoke Lemma 25 to complete the proof: the

role of 𝑛 is replaced by that of its possible divisors. In particular, the “worst” possible

divisor of 4 from Lemma 25 results in the “worst” 𝛽 for 𝑛 divisible by 4.

We emphasize that by Lemma 26 𝑀(𝑛) ≤ 𝐶 for some constant 𝐶 ≈ 9.4248, with

even better values available at, e.g., prime 𝑛 > 100. There, 𝐶 ≈ 5.8146 suffices.

Proof of Prop. 10. Corollary 7, with 𝑝0 = 0 and 𝑝𝑗 = 𝑃𝑗/
∑︀

𝑗 𝑃𝑗 for 0 < 𝑗 < 𝑛 yields

a 𝑏⃗ with |⃗𝑏|∞ ≤ 𝑀(𝑛) and |⟨⃗𝑏, 𝜓𝑗⟩|2 ≥ 𝑝𝑗 for 0 < 𝑗 < 𝑛. Without loss, we may

assume that ⟨⃗𝑏, 𝜓0⟩ ≤ 0, else simply flip signs. The fact that we have the appropriate

frequency magnitudes for 𝜓𝑗 translates to an equivalent statement for the complex

exponentials by considering the real and imaginary parts separately. Recalling the

upper bound 𝑃 ≤ 𝑛2𝜌(1 − 𝜌), we obtain |̂⃗︀𝑏𝑗|2 ≥ 𝑃𝑗/(𝜌(1 − 𝜌)). Now consider 𝑎⃗ =

(⃗𝑏+𝑀(𝑛))/2𝑀(𝑛). Then, 𝑎⃗ ∈ [0, 1], 𝜌(⃗𝑎) ≤ 0.5, and |̂⃗︀𝑎𝑗|2 ≥ 𝑃𝑗/(4𝑀(𝑛)2𝜌(1− 𝜌)) for

0 < 𝑗 < 𝑛. We are now in a similar situation to that of Prop. 8, except with an extra

𝑀(𝑛)2 factor, and the fact that 𝜌(⃗𝑎) ≤ 0.5 instead of 𝜌(⃗𝑎) = 0.5 + 𝑜(1). The latter is

no problem, as lower 𝜌 only helps us with the shot noise term, and the former simply

multiplies the 2 of (3.9) by 𝑀(𝑛)2.
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3.3.3 Greedy algorithm

Here we propose a (heuristically) efficient algorithm to construct vectors 𝑎⃗ that satisfy

the conditions of Prop. 10. This algorithm has its roots in Nazarov’s original proof.

Recall that at a high level, Nazarov’s theoretical construction boils down to finding

a “sign cortège” [86, p. 6] that is globally optimal for a certain real-valued Boolean

function of 𝑛 signs, taking exponential time in the worst case. However, notice that in

the proof of Theorem 8, we emphasized the word “maximizes”. A closer examination

of the proof of Theorem 8 reveals that one simply needs a sign cortège that is locally

optimal in the sense of Hamming geometry for the proof to work! In less explicit terms,

one can simply replace the emphasized “maximizes” with “locally maximizes” and

the proof still goes through.

Our observation suggests a natural greedy algorithm where one starts with a ran-

dom cortège, and then flips one sign at a time if it improves the objective, repeating

until no further improvement is possible. We do not know of any theoretical justifi-

cation as to why this is a good algorithm: for instance, a function on the hypercube

may have only one local optimum.

Nevertheless, in our simulations 5 this runs very fast, and empirically takes time

cubic in 𝑛. For example, on our standard laptop, we can generate apertures for

𝑛 = 2000 in 4 seconds. Our situation superficially resembles the situation of the

simplex algorithm and the smoothed analysis of [105], or more directly recent work on

max-cut [9]. Direct application of the methods of [9] to obtain theoretical guarantees

runs into difficulties with the nonlinear change in objective with a single bit flip in

our setting, unlike the linear change for max-cut. As such, we defer theoretical study

of the greedy algorithm given here to future work.

3.3.4 Simulations

We give a simple illustration in Fig. 3-5 which confirms the following intuition based

on our main results eqs. (3.9), (3.10) and (3.13). With an i.i.d. scene prior, one

5Code:https://github.com/gajjanag/apertures
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would prefer using the spectrally flat construction as opposed to the one coming

from Nazarov’s theorem due to the smaller constant. On the other hand, with a

strong prior—e.g., a bandlimited one—the waterfilling becomes highly skewed, and

one would favor the one coming from Nazarov’s theorem as it takes into account such

strong skewing of the desired spectrum and accordingly utilizes the spectrum better.

For completeness, we also include the performance of a random on-off sequence with

density 𝜌 [125], where 𝜌 is optimized over [0, 1] for each 𝑡.

In Fig. 3-5, we note that the Nazarov and lower bound plots are within a constant

distance of each other even as 𝑡 grows. The constant distance arises from our notion

of “near-optimality”, namely that the performance is within a constant multiplicative

factor of being optimal. That multiplicative factor translates to a constant on a

logarithmic scale. For the spectrally flat case, the plot does not diverge from the

lower bound as 𝑡 grows, though the gap between the two depends on the choice of

prior, and can be arbitrarily large given certain priors unlike the Nazarov plot. We also

note that the optimal random on-off (where 𝜌 is optimized for each value of 𝑡) diverges

from the lower bound. We may heuristically justify the phenomenon as follows. We

may assume that asymptotically, |̂⃗︀𝑎𝑖|2 behaves like a 𝜒-squared random variable of

two degrees of freedom, and plug in its density into the LMMSE expression (3.1).

Upon performing the computation, this divergence ultimately comes from the fact

that ∫︁ ∞

0

𝑎𝑒−𝑥𝑑𝑥

1 + 𝑎𝑥
= Θ(log(𝑎)), 𝑎→ ∞.

3.4 Discussion and Future Work

Our refined analysis of a model drawing heavily from [125] yields tight conclusions

across all scene correlation patterns and noise regimes, with sharp conclusions avail-

able in some specific scenarios. Moreover, we give heuristically efficient algorithms for

the generation of optimal coded apertures. We also note that similar conclusions to

our main results eqs. (3.9), (3.10) and (3.13) also hold for MI and Gaussian statistics

of [125], simply because of the form of the expression for MI. Basically, MI is another
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functional that may be written in the form

𝑛−1∑︁
𝑖=0

𝑓(|̂⃗︀𝑎𝑖|),
where 𝑓 is concave.

Nazarov’s theorem is sufficiently general to allow the analysis of such functionals

to a similar extent to what we did for LMMSE. Namely, although we can’t necessarily

give sharp answers (in our view, a difficult problem!), we can give answers that are

effectively constructible and guaranteed to be good in the sense of being a constant

factor away from optimal. Naturally, the precise sense of this, and the exact constant

factor, will depend on the choice of 𝑓 . We leave such exercises to the interested reader,

who may have his/her own favorite 𝑓 .

Furthermore, we note that our conclusions generalize naturally to 2D apertures,

and in particular we have a tight characterization of optimal coded apertures in that

setting. Concretely, one simply needs to take 𝛽(𝑛)2 as opposed to 𝛽(𝑛) due to the

squaring of the 𝑙1 lower bound for the 2D DFT. The rest of the analysis of Theorem 8

and Prop. 10 carries over naturally, with the orthogonal basis provided by products

𝜓𝑗 ⊗ 𝜓𝑘. We emphasize that this works regardless of the scene prior, even ones

which are not separable. With an i.i.d. prior, separable apertures are optimal up to

constants as in 1D, and in fact taking a product of spectrally flat apertures yields

natural analogs of Props. 8, 9. However, with other priors, it seems like one needs

the generality provided by Theorem 8. For separable priors, one can simply use a

product of apertures arising from the specialization of Nazarov’s theorem to the 1D

DFT that we described in this chapter. For general priors, one can repeat the analysis

of this chapter, applied to the 2D DFT instead with basis 𝜓𝑗 ⊗ 𝜓𝑘. Our work thus

also answers the question of 2D apertures raised in [125]. We also view experimental

verification of these ideas as a worthwhile task.

As noted in [125], [119] raises the question of whether continuous-valued masks

perform better than binary-valued ones. Our work sheds some light on this: the

solution of Nazarov which we have shown is tight does seem to use the flexibility of
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the 𝑙∞ norm in an essential way; see, e.g., [58, p. 12] for more on this. And more

specifically, we have numerical evidence for finite 𝑛; to give a concrete example, for 𝑛 =

13, the mask [1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0] has optimal LMMSE for an i.i.d. scene over

binary-valued masks for 𝜌 = 6/13, 𝜃 = 0.01,𝑊 = 𝐽 = 0.001, 𝑡 = 130, but is improved

upon by the continuous-valued mask whose first entry is equal to 𝜖 and whose 𝑖th

entry is equal to 1 − 𝜖/6 if 𝑖 − 1 is a quadratic residue modulo 13, and 0 otherwise,

for 0.26 ≤ 𝜖 ≤ 0.34. We do view a full resolution of this question to be of significant

mathematical as well as engineering interest. The engineering interest stems from

our belief that partial occluders may be more difficult to synthesize than the classical

on-off apertures. The surrounding mathematical landscape is rich, and a touchstone

is perhaps provided by the recently resolved (by [13]) “Littlewood’s flatness” problem.

First raised by Erdős [41, Prob. 26] and later extended and popularized by Littlewood

in several of his papers such as [77] as well as his book [78], Littlewood’s problem is

very simple to state. In the original form proposed by Erdős [41, Prob. 26], we have

Theorem 9. There exists, for each 𝑛, a polynomial

𝑓𝑛(𝑧) =
𝑛∑︁

𝑘=1

𝜖𝑛,𝑘𝑧
𝑘 (𝜖𝑛,𝑘 = ±1),

such that, for all 𝜃, 𝑐1
√
𝑛 < |𝑓𝑛(𝑒𝑖𝜃)| < 𝑐2

√
𝑛, where 𝑐1, 𝑐2 are positive constants

independent of 𝜃, 𝑛.

Note that what we ask here, for the spectrally flat case, is a weaker variant of the

above Theorem 9, where we restrict 𝜃 to 2𝜋𝑘/𝑛 with 𝑘 = 0, 1, . . . , 𝑛 − 1. However,

analogous questions can be asked in the spirit of Nazarov’s solution to the coefficient

problem, where one still restricts 𝜃 to 2𝜋𝑘/𝑛, but asks for a “shaped” magnitude

response across the unit circle. We also think that an efficient numerical procedure

(at least heuristically), both in the context of Littlewood flatness as well as a “shaped”

magnitude response in the spirit of Nazarov’s solution is an interesting challenge.

We note that our weaker variant of the flatness problem has some aspects that

may be understood without too much investment. For example, allowing the 𝜖𝑛,𝑘

to lie on the unit circle allows for a trivial solution to the weak variant above for
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𝑛 = 𝑝 prime via the Gauß sum. One can also work with the standard FFT recursion

(Cooley/Tukey/Gauß) and construct solutions inductively to the weak variant for

𝑛 = 2𝑘 with 𝜖𝑛,𝑘 ∈ {±1,±𝑖}. Naturally, the full resolution by [13] is much more

involved and we do not describe it here.

We also note a potentially interesting approach towards understanding the limits

to which the coefficient problem can be solved with binary vectors that draws a con-

nection with our work in the previous chapter, and linear programming bounds (2.12)

more specifically. Briefly, a {0, 1} vector of length 2𝑑 can be thought of as a code in

the Hamming space {0, 1}𝑑. As the discussion in Remark 1 makes clear, the dual dis-

tance distribution of this code is nothing but the (binary) Fourier squared magnitude,

grouped by Hamming weight. Thus, constraints on the distance/dual distance distri-

bution translate into constraints on the (binary) Fourier coefficients. One may object

that the characters are not the same as those for Z/𝑛Z, however we emphasize that

Nazarov’s solution works for both and thus view this as a reasonable toy problem.

Thus, is it possible that the linear programming bounds yield something interesting

for the coefficient problem on {0, 1}2𝑑? A direct use does not, simply because we

have, in the language of the previous chapter, the following

Lemma 27. For any 𝑛, 𝑞 and any 𝑐𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛 with
∑︀

𝑖 𝑐𝑖 = 1, (1, 𝑐1, 𝑐2, . . . , 𝑐𝑛)

is a valid quasicode.

Proof of Lemma 27. Follows immediately from positive definiteness of Krawtchouk

polynomials 𝐾𝑗(0) ≥ |𝐾𝑗(𝑖)|.

There are thus numerous possibilities that are perhaps worth exploring for future

research. We outline a few here.

1. Is it possible to “shape” the magnitudes of the binary Fourier coefficients arbi-

trarily in the sense of a multiplicative constant a la Nazarov once we “coalesce”

them by Hamming weight? We believe the answer is yes, but do not have a

construction at present.

2. It is also possible that the LP bounds are just not enough to give useful in-

formation about the coefficient problem. This lack of information from the LP
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bounds is a mystery for us and we believe this phenomenon worth clarifying

further. For example, what happens with higher order SDP bounds and the

coefficient problem?

3. Can we use answers to the above to get useful information for other orthonormal

bases, such as Fourier on Z/2𝑑Z?

Although Prop. 10 shows universal tightness across all priors, even “extreme” ones

like bandlimited ones, the constant is worse than that for a spectrally flat construction

for i.i.d. scenes. The better performance of spectrally flat constructions over the ones

inspired by Nazarov’s theorem (in certain regimes) seems to extend to other “natural”

priors like the 𝑓−𝛾 one, as the waterfilling still yields something that is nearly “flat”.

It might be interesting to quantify and understand the “flatness” of the waterfilling

for “natural” priors. Such an analysis is conceptually simple given the contents of the

waterfilling Lemma 21 and associated bound Proposition 7.

One issue that we have not addressed here or in [125] is the equal scaling of 𝑛 at

both sensor and scene. One natural way to address this is letting A be 𝑚 × 𝑛, or

alternatively one could study a continuous model. Another issue is obtaining a good

understanding of mask/lens combinations. Understanding such combinations will

require not only updates to the simple propagation model studied here and in [125],

but also a refined understanding of the cost tradeoffs between lenses and apertures.

Stepping back from imaging problems, one may ask the question of where else

Nazarov’s theorem can be used in applied contexts, something also raised implicitly

in [21]. For example, as Nazarov’s theorem does not care about orthogonality, but

merely a 𝑙2 estimate like Parseval’s theorem, one can use it for frames as well as

bases, or for anything satisfying a restricted isometry property. Another example

is the fact that we merely use the 𝑙∞ case of his theorem which works for all 𝑙𝑝

spaces. Furthermore, the astute reader would have noticed that much of the discussion

of this chapter relies only on just a few pieces that have a fair bit of slack. We

therefore firmly believe that Nazarov’s theorem and the (heuristically) efficient greedy

algorithm could play interesting roles elsewhere. An entertaining illustration is that
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of constructing good lattice packings via Bang’s lemma [16] as Ball [14] describes.

We do not describe Ball’s construction here, but simply note that we still agree with

Ball’s assessment given at the end of his article [14]: “As with other “constructions”

of efficient packings, the simplicity here is probably an illusion”. Roughly speaking,

the construction relies on finding a sign cortège of length at least exponential in

𝑛. Without our observation regarding the sufficiency of “local” optimality, this would

require at least doubly exponential time in the dimension 𝑛. With it, we (heuristically)

get rid of one exponentiation to make it singly exponential.
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(a) i.i.d prior (𝑑(𝑥) = 𝜃 for 0 ≤ 𝑥 ≤ 1/2)
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(b) bandlimited prior (𝑑(𝑥) = 𝜃 for 0 ≤ 𝑥 ≤ 𝑠− 𝑟, 0 for 𝑥 ≥ 𝑠+ 𝑟, and
𝜃(𝑠+ 𝑟 − 𝑥)/(2𝑟) otherwise for 0 ≤ 𝑥 ≤ 1/2)

Figure 3-5: 𝑛 = 677, 𝜃 = 1,𝑊 = 𝐽 = 0.001, 𝑠 = 0.02, 𝑟 = 0.005. We use the quartic
residue construction for spectrally flat. Jaggedness of the Nazarov plot comes from
the fact that in general the spectrum allocation varies with 𝑡 and we randomly seed
the sign cortège.
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Chapter 4

New lower bounds for the mean

squared error of vector quantizers

For twelve years I have been studying properties of parallelohedra. I can

say it is a thorny field for investigation, and the results which I obtained

and set forth in this memoir cost me dear. . .

Three-dimensional parallelohedra are now playing an important role in

the theory of crystalline bodies, and crystallographers have already paid

attention to properties of these strange polyhedra, but till now

crystallographers were satisfied with the description of parallelohedra

from a purely geometrical point of view. I noticed already long ago that

the task of dividing the 𝑛-dimensional analytical space into convex

congruent polyhedra is closely related to the arithmetic theory of

positive quadratic forms.

Georgy Voronoï, 1907

4.1 Introduction

Let us shift gears a bit and examine the problem of vector quantization in Euclidean

space. Links and interesting connections to material presented in the preceding chap-

ters will become clear as we proceed.

119



The problem of quantization is of fundamental importance to signal processing,

with a long and distinguished history [57]. Our focus in the current chapter is on

the mathematical theory. Specifically, we study lower bounds on the mean squared

error under the “high-resolution limit”, a study which originated in work on pulse-

coded modulation (PCM) [90]. We do note that there is an important complementary

perspective offered by rate distortion theory, see e.g. [57] or [92, Ch. 25-27] for more

information on this topic and the relation between these two perspectives. The focus

on mean squared error is for mathematical simplicity, though even in such a setting

fine-grained questions appear difficult. An astute reader will note that a nontrivial

amount of the discussion, especially the general setting explored in Theorem 10, is

generalizable to distortion measures that go beyond squared error.

It is well known that one can reduce the “high-resolution” problem for general

source probability distributions (under weak assumptions [129, Thm. 1]) to that of

studying a uniform source over a large region through the use of “companders” in

the scalar case [19, 91], and a point density function in the general case [128, 129]
1. As such, the basic object of study may be defined as follows [30]. For points

𝑝1, 𝑝2, . . . , 𝑝𝑀 ∈ [0, 1]𝑑, define the normalized second moment (NSM), scaled down by

a factor of 𝑑 by

𝐺(𝑝1, . . . , 𝑝𝑀) ,
1

𝑑

1
𝑀

∑︀𝑀
𝑖=1

∫︀
𝑉 (𝑝𝑖)

|𝑥− 𝑝𝑖|2𝑑𝑥(︁
1
𝑀

∑︀𝑀
𝑖=1 |𝑉 (𝑝𝑖)|

)︁1+ 2
𝑑

, (4.1)

where 𝑉 (𝑝) denotes the Voronoï cell associated to 𝑝 restricted to [0, 1]𝑑, and | · |

denotes volume. The Voronoï cell 𝑉 (𝑝) is the set of points closer to 𝑝 than any other

point, that is

𝑉 (𝑝𝑖) , {𝑥 ∈ R𝑑 : ∀𝑗 ̸= 𝑖, |𝑥− 𝑝𝑖| < |𝑥− 𝑝𝑗|}.

Note that as defined above, the Voronoï cells do not strictly partition R𝑑 as the cell

boundaries are not included in any of them. Such issues do not concern us at the

moment, and play a minimal role in this chapter. One may ignore these issues in our

context simply because these boundaries have zero measure, and thus the boundaries

1For 𝑑 = 2, this is already implicitly present in [43].
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do not affect “bulk” quantities like the NSM. We henceforth reserve the term NSM

to refer to the quantity that is not divided by 𝑑, so for instance in (4.1), the NSM is

𝑑𝐺(𝑝1, . . . , 𝑝𝑀). We shall call 𝐺 itself the per-dimensional NSM.

We also find it convenient to talk about the NSM of a body 𝐵 about a point 𝑣,

defined by

𝑁𝑆𝑀(𝐵, 𝑣) ,

∫︀
𝐵
|𝑥− 𝑣|2𝑑𝑥
|𝐵|1+ 2

𝑑

.

When the choice of 𝑣 is clear from context, we may omit it. For example, when we

talk of the NSM of a ball, 𝑣 is implicitly the center of the ball.

Before proceeding further, we comment on the history of Voronoï cells. The

original mathematical impetus can arguably be attributed to Gauß, Hermite, and

Lagrange, who did a detailed study of quadratic forms in number theory. According

to [114, p. 7], Dirichlet delivered an interesting lecture in the physical-mathematical

class meeting of the Prussian Military Academy on the 31st of July, 1848 on the reduc-

tion of a positive quadratic form with three indeterminate integers. In his successful

effort at simplifying the work of Gauß and Seeber on this topic, Dirichlet introduced

what we now commonly call a Voronoï cell of a lattice (corresponding to the quadratic

form). Hence some authors also call this a “Dirichlet tesselation”. However, Voronoï

appears to have been the first to undertake a detailed study of such tessellations in

three outstanding papers in Crelle’s journal ( [122], [121], [123]). Henceforth we stick

to the common practice of talking about Voronoï cells, partitions, decompositions,

and tessellations. The middle two are exact synonyms, and the last one, which was

the principal object of Voronoï’s study, we reserve for the lattice case only, that is

when 𝑝𝑖 are elements of a lattice Λ ∈ R𝑑.

Definition 15. A lattice Λ ∈ R𝑑 is an additive subgroup of R𝑑 which is isomorphic

to the additive group Z𝑑, and which spans the real vector space R𝑑.

We also note that in applied contexts, the physician and father of modern epi-

demiology John Snow used a Voronoï partition to illustrate how most people who died

in the 1854 Broad Street cholera outbreak lived closer to the infected Broad street

pump than to any other pump. For a detailed account of how Snow collected his
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data and constructed his map, we recommend [68]. Given the simplicity and central

importance of this idea, we think it likely that this idea was discussed by many others

as well.

Returning to mathematics, we may then define the minimal per-dimensional NSM

by

𝐺𝑑 , lim
𝑀→∞

inf
𝑝𝑖
𝐺(𝑝1, . . . , 𝑝𝑀). (4.2)

Restricting to the special case where 𝑝𝑖 are points of a lattice Λ′, (4.1), (4.2) simplify,

and one may define a minimal per-dimensional NSM for lattices by

𝐺Λ,𝑑 , inf
Λ′

∫︀
𝑉 (0)

|𝑥|2𝑑𝑥

𝑑|𝑉 (0)|1+ 2
𝑑

. (4.3)

Zador [128, 129] proved

𝐺𝑑 ≥
1

(𝑑+ 2)𝜋
Γ

(︂
𝑑

2
+ 1

)︂ 2
𝑑

. (4.4)

Zador [128, 129] also obtained an asymptotically matching upper bound

𝐺𝑑 ≤
1

𝑑𝜋
Γ

(︂
𝑑

2
+ 1

)︂ 2
𝑑

Γ

(︂
1 +

2

𝑑

)︂
,

and thus showed

lim
𝑑→∞

𝐺𝑑 =
1

2𝜋𝑒
.

Zador’s work [128, 129] contains most of the foundational material on the mathe-

matics of vector quantization, see e.g. the survey of Gray and Neuhoff [57] for details.

Poltyrev [130, Lemma 1] observed that asymptotically good coverings result in

asymptotically good quantizers. In particular, one may use the good lattice coverings

of Rogers [98] and demonstrate

lim
𝑑→∞

𝐺Λ,𝑑 =
1

2𝜋𝑒
.
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4.2 Main results

The main results of this chapter are improvements on (4.4). To describe them, we

need some notation. Let

𝑉𝑑 ,
𝜋

𝑑
2

Γ
(︀
𝑑
2

+ 1
)︀

be unit ball volume. Then 𝐴𝑑 = 𝑑𝑉𝑑 is its surface area. Let

𝐼𝑥(𝑎, 𝑏) ,

∫︀ 𝑥

0
𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡∫︀ 1

0
𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡

be the regularized incomplete beta function. One may compute the solid angle and

NSM of a circular solid cone of diagonal 1, height ℎ about its vertex and obtain

Θ(𝑑, ℎ) =
1

2
𝐴𝑑𝐼1−ℎ2

(︂
𝑑− 1

2
,
1

2

)︂
,

𝜉(𝑑, ℎ) =
𝑑1+

2
𝑑

𝑑+ 2

ℎ2 + (1 − ℎ2)𝑑−1
𝑑+1

(ℎ𝑉𝑑−1(1 − ℎ2)
𝑑−1
2 )

2
𝑑

.

We then have the following conjecture:

Conjecture 2. Let 𝑑 ≥ 2. Let 𝐹𝑑 , 2(2𝑑−1), and let ℎ𝑑 be the root of Θ(𝑑, ℎ)− 𝐴𝑑

𝐹𝑑
=

0. Then,

𝐺Λ,𝑑 ≥
𝜉(𝑑, ℎ𝑑)

𝑑𝐹
2
𝑑
𝑑

. (4.5)

Taking

𝐹𝑑,𝑘 , 2(2𝑑 − 1) + (𝑘 − 1)2𝑑 (4.6)

in the above bound as opposed to 𝐹𝑑, one obtains a lower bound on 𝐺𝑑 restricted to

quantizers formed by 𝑘 translates of a lattice.

We believe that we have firm evidence in favor of this Conjecture 2. The missing

ingredients can be captured by certain technical inequalities that may be readily

verified on a computer (such as (4.19)), but that we are unfortunately unable to

rigorously prove.

One of the chief aims of this chapter is to enable the reader to understand where
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this conjecture comes from, and why we view it as extremely plausible. We also believe

that Conjecture 2 should be easier to prove than Conway and Sloane’s conjectured

bound [31], though we note that Conway and Sloane’s conjectured bound is sharper

and applies to all quantizers, not just lattice quantizers.

We are sympathetic to the reader who is dissatisfied with the state of affairs

regarding the missing technicalities required to prove Conjecture 2. Such readers may

find solace in the following rigorous improved lower bound valid for all quantizers,

and not just lattice ones:

Theorem 10. Define 𝜈(𝑑, 𝑟) for dimension 𝑑 ≥ 1, 0 ≤ 𝑟 ≤ 1 to be the NSM of a

truncated unit ball centered at the origin and computed about the origin. Here the ball

is truncated by intersecting it with a hyperplane at distance 𝑟 from the origin, such as

𝑥1 ≤ 𝑟. At the limit 𝑟 = 0, we have a hemisphere, and at 𝑟 = 1, we have the original

unit ball. Define

𝜅(𝑑, 𝑟) , min
0≤𝑥≤𝑟

𝜈(𝑑, 𝑟).

Let 𝑐𝑑 = 𝜅(𝑑, 1) be the NSM of the unit ball, namely

𝑐𝑑 ,
𝑑

(𝑑+ 2)𝜋
Γ

(︂
𝑑

2
+ 1

)︂ 2
𝑑

.

Let 𝛾𝑑 , 1 − 3
2

(︀
2
3

)︀𝑑, and let 𝑘𝑝 be the base of the exponent of the asymptotic sphere

packing bound of Kabatyanskii and Levenshtein [69], given by

𝑘𝑝 = 2−0.599... ≈ 0.6602.

Let 𝑑 ≥ 3 be sufficiently large. Let 𝑓(𝑧) be an 𝑛-level quantizer on [0, 1]𝑑. Then,

∫︁
[0,1]𝑑

|𝑧 − 𝑓(𝑧)|2𝑑𝑧 ≥ max

(︃
𝑛− 2

𝑑 𝑐𝑑
1

2

(︃(︂
2

3

)︂1+ 2
𝑑

+

(︂
4

3

)︂1+ 2
𝑑

)︃
,

𝑛− 2
𝑑

(︃(︂
𝛾𝑑 −

1

2

)︂
𝜅

(︂
𝑑,

3

2
𝑘𝑝

)︂− 𝑑
2

+

(︂
3

2
− 𝛾𝑑

)︂
𝑐
− 𝑑

2
𝑑

)︃− 2
𝑑

+ 𝑜(𝑛− 2
𝑑 )

)︃
,

as 𝑛→ ∞.
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To the best of our knowledge, Theorem 10 represents the first rigorous improve-

ment over the bound of Zador (4.4).

4.3 Proofs

At a high level, our strategy for lattice quantizers may be described as follows. The

original “sphere bound” of Zador [128], [129] comes from the fact that each Voronoï

cell’s second moment, normalized by its volume, can’t be lower than that of a ball.

This trivially provable fact is very nice as it immediately yields Zador’s asymptotically

tight bound upon carrying out the computation. Our approach here is heavily inspired

by the work of Tóth/Newman [116], [88], who prove a sharp bound for 𝑑 = 2 by

utilizing an upper bound on the number of edges of the Voronoï polygons. This upper

bound on the number of edges, together with some calculus, convexity, and Hölder’s

inequality allows one to prove that the hexagonal lattice quantizer is optimal for 𝑑 = 2.

What we do is simply work with upper bounds on facet counts in higher dimensions

and appropriately generalize the machinery. There is one serious drawback of this

approach: there is a finite upper bound on facet counts only for the lattice case for

𝑑 ≥ 3, see e.g. work of Dolbilin and Tanemura [39, §5] for a construction for 𝑑 = 3

of arbitrarily large facet counts for a Voronoï cell in a non-lattice quantizer. Our

methods therefore bifurcate into separate lattice and general quantizer cases.

Although we find the above approach to lattice quantizers more interesting as

compared to our methods for the general case, we shall first study the general case

and prove Theorem 10. Our justification for this ordering is that it illustrates some

of the basic convexity and Hölder’s inequality machinery that plays a key role in the

lattice case as well. In fact, even before studying the general case, we give a brief

rederivation of Zador’s lower bound (4.4) using convexity. We have not found this

approach in the literature.
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4.3.1 Rederivation of Zador’s lower bound

Let us for simplicity look at lattice quantizers Λ with |Λ| = 1 in R𝑑. By |Λ| = 1 we

mean that the volume of a fundamental cell of the lattice is 1. We have the basic

∀𝑥,∀𝛽 > 0, min
𝑣∈Λ

|𝑥− 𝑣|2 ≥ − 1

𝛽
log

(︃∑︁
𝑣∈Λ

𝑒−𝛽|𝑥−𝑣|2
)︃

(4.7)

Let the quantizer value (second moment) be denoted 𝑁𝑆𝑀(Λ); we have ensured

normalization by the assumption that |Λ| = 1. We have by the concavity of log

and (4.7)

𝑁𝑆𝑀(Λ) =

∫︁
𝑥∈𝑉 (0)

min
𝑣∈Λ

|𝑥− 𝑣|2𝑑𝑥

≥ − 1

𝛽

∫︁
𝑥∈𝑉 (0)

log

(︃∑︁
𝑣∈Λ

𝑒−𝛽|𝑥−𝑣|2
)︃
𝑑𝑥

≥ − 1

𝛽
log

(︃∫︁
𝑥∈𝑉 (0)

∑︁
𝑣∈Λ

𝑒−𝛽|𝑥−𝑣|2𝑑𝑥

)︃

= 𝑑

(︃
1

2𝜋

log
(︀
𝛽
𝜋

)︀
𝛽
𝜋

)︃
.

Optimizing over 𝛽, one picks 𝛽 = 𝜋𝑒. This choice of 𝛽 yields 𝑁𝑆𝑀(Λ) ≥ 𝑑
2𝜋𝑒

,

which is in fact the asymptotic value (𝑑 → ∞) of the minimum NSM, as proved by

Zador [129]. Can we do better and actually recover the non-asymptotic lower bound

of Zador (4.4)? It turns out that we can!

More abstractly, let us consider what we need for the above argument. Let us

consider a radial function 𝑓(𝑟2) satisfying:

𝑓 ≥ 0, 𝑓 ′ ≤ 0, 𝑓 ′′ ≥ 0.

We also certainly want 𝑓 ∈ 𝑙1(R𝑑), and the inverse to make sense on the infinite sum∑︀
𝑣∈Λ 𝑓(|𝑥− 𝑣|2). With these conditions met, we may replace 𝑒−𝛽𝑟2 by 𝑓 .

It may be checked that the exact optimal 𝑓 meeting these conditions is a “tent”

function of the appropriate scale, where a “tent” function is of the form 𝑓(𝑟) =

126



(𝑎 − 𝑏𝑟)+ with 𝑥+ = max(𝑥, 0) and 𝑎, 𝑏 > 0. This choice of 𝑓 may be justified as

follows. The tent functions are the extremal rays of the cone given above, and it is

easily checked that using a convex combination of functions for the above argument

does no better than the best extremal endpoint. All that remains is to pick the right

scale for the tent. Upon optimizing the scale of the tent and performing the relevant

computation, one recovers Zador’s non-asymptotic lower bound (4.4).

The above argument generalizes to quantizers formed by 𝑘 translates of a lattice,

where 𝑘 is a finite number. Such quantizers can come arbitrarily close in performance

to optimal quantizers by standard limiting arguments. For example, just consider

quantizing the unit cube at arbitrarily fine resolution, and then replicating the quan-

tization points contained in the unit cube across space by translating them by Z𝑑.

Thus in fact the argument of this section is a genuine rederivation of Zador’s lower

bound (4.4).

4.3.2 The general case

Hopefully the reader is now convinced of the value of convexity considerations in the

study of the minimal NSM of quantizers. We now perform a more detailed study and

prove Theorem 10.

We start off with a basic inequality.

Lemma 28. Let 𝑎𝑖, 𝑏𝑖 ≥ 0,
∑︀

𝑖 𝑎𝑖 = 1, 𝑝 > 1, and let 𝑏𝑖 ≥ 𝑐 > 0 for all 𝑖. Then, we

have ∑︁
𝑖

𝑎𝑝𝑖 𝑏𝑖 ≥ max

⎛⎝𝑐∑︁
𝑖

𝑎𝑝𝑖 ,

(︃∑︁
𝑖

𝑏
1

1−𝑝

𝑖

)︃1−𝑝
⎞⎠ .

Proof of Lemma 28. The first term in the maximum is trivial, and the second term

is immediate from Hölder’s inequality.

In our application of Lemma 28, 𝑐 will be the NSM of a ball, 𝑏𝑖 will be the NSM

of Voronoï cells, 𝑎𝑖 will be the volumes of the Voronoï cells in a decomposition of the

unit square, and finally 𝑝 = 1 + 2/𝑑 where 𝑑 is the dimension of the vector quantizer.
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Plugging in 𝑏𝑖 ≥ 𝑐 into Lemma 28, and dropping the first term out of the maximum

immediately yields Zador’s “sphere bound” (4.4) once the number of points 𝑛 → ∞

as we defined earlier. Plugging in 𝑎𝑖 = 1/𝑛 and dropping the second term also yields

Zador’s sphere bound. Thus our goal is to somehow get a nontrivial trade-off between

the two terms. Quantifying this trade-off amounts to the task of showing that at least

one of the following phenomena must take place for any vector quantizer:

1. A nontrivial amount of “dispersion” in the volumes of the Voronoï cells.

2. A nontrivial fraction of the 𝑏𝑖 are bounded away from the ball’s NSM.

Let us first understand why one would might expect this. Consider the “extreme” case

for the first item, which happens with lattice quantizers where all Voronoï cells are

identical. Each point of the lattice has a “close” nearest neighbor since lattices can’t

have packing density exceeding standard sphere packing density bounds. Heuristi-

cally, a packing of spheres is just a non-overlapping collection of equally sized balls

in Euclidean space. Its density is given by the limiting ratio of the volume occupied

by the balls to the volume of a large bounded region, with the limit taken as the

region grows to infinity. As we are not proving statements about sphere packing

here, we simply refer the reader to e.g. [30, Ch. 1] for a rigorous definition of sphere

packing density. The current best known (asymptotic) upper bound is the classi-

cal 2(−0.599···+𝑜(1))𝑑 due to Kabatyanskii and Levenshtein [69], who used Delsarte’s

linear programming method [35] together with a suitably modified version (for the

Euclidean sphere) of the construction of McEliece, Rodemich, Rumsey, and Welch

(MRRW) [82] done for Hamming space. The sphere packing bound implies that the

𝑏𝑖 must be bounded away from 𝑐: at best their NSM matches that of a ball cut off by

a hyperplane governed by the packing radius. The sphere packing bounds apply not

just to lattices, but also arbitrary point configurations! We may therefore proceed

further.

To mathematically quantify this phenomenon, the following is useful.

Lemma 29. Let 𝑥, 𝑦 ≥ 0, and 𝑝 > 1, and let 𝑤, 𝑎, 𝑏 ∈ (0, 1). Consider the optimiza-
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tion problem

min𝐹 , 𝑤𝑥𝑝 + (1 − 𝑤)𝑦𝑝,

subject to 𝑤𝑥+ (1 − 𝑤)𝑦 = 1,

𝑥 ≤ 𝑎,

𝑤 ≥ 𝑏.

Then the minimum is attained at 𝑥 = 𝑎, 𝑤 = 𝑏.

Proof of Lemma 29. First, let 𝑤 be fixed, and consider optimizing over 𝑥. Setting

𝑦 = 1−𝑤𝑥
1−𝑤

, we get
𝜕𝐹

𝜕𝑥
= −𝑝𝑤

(︃(︂
1 − 𝑤𝑥

1 − 𝑤

)︂𝑝−1

− 𝑥𝑝−1

)︃
.

As 𝑥 < 1, 𝑝 > 1, we see that 𝐹 is decreasing in 𝑥. Thus for a fixed 𝑤, we must set

𝑥 = 𝑎 to minimize 𝐹 .

Now, setting 𝑥 = 𝑎, we claim that 𝐹 is increasing in 𝑤. Showing this would

complete the proof. Once again, studying 𝜕𝐹
𝜕𝑤

, we reduce our task to showing:

(1 − 𝑎𝑤)𝑝−1[1 − 𝑎𝑤 − (1 − 𝑎)𝑝] ≤ (𝑎− 𝑎𝑤)𝑝. (4.8)

We have equality at 𝑎 = 1, suggesting the following proof of (4.8). We may

rewrite (4.8) as

(1 − 𝑎𝑤)𝑝 − (𝑎− 𝑎𝑤)𝑝 ≤ (1 − 𝑎)𝑝(1 − 𝑎𝑤)𝑝−1.

But observe that 𝑥𝑝 is convex since 𝑝 > 1, and so we have:

(1 − 𝑎𝑤)𝑝 − (𝑎− 𝑎𝑤)𝑝 ≤ [(1 − 𝑎𝑤) − (𝑎− 𝑎𝑤)]𝑝(1 − 𝑎𝑤)𝑝−1,

as desired.

We may now proceed with the Proof of Theorem 10 along the sketched direction

above.
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Proof of Theorem 10. Let the points of the quantizer be 𝜆1, 𝜆2, . . . , 𝜆𝑛. Let the min-

imum distance for each of these points to their nearest neighbors be denoted by 𝑟𝑖.

Define 𝑟𝑑(𝑣) to be the radius of the ball in 𝑑 dimensions of volume 𝑣. By the sphere

packing consideration, we see that for any 0 < 𝛾 < 1, and sufficiently large 𝑑, 𝛾𝑛+𝑜(𝑛)

of the 𝜆𝑖 must have

𝑟𝑖 ≤
(︂

1

1 − 𝛾

)︂ 1
𝑑

𝑘𝑝𝑟𝑑

(︂
1

𝑛

)︂
. (4.9)

For if this statement was not true, we could restrict our attention to the (1−𝛾) fraction

of points with largest minimum distance and violate the sphere packing density upper

bound.

Here 𝑘𝑝 is the base of the exponent in an asymptotic upper bound for sphere

packing density of the form ∆𝑑 ≤ 𝑘
𝑑+𝑜(𝑑)
𝑝 , and we may take by [69]

𝑘𝑝 = 2−0.599... <
2

3
< 1.

We emphasize that the argument does not rely on the precise numerics of 𝑘𝑝, though

our choice of certain parameters here does. For example, at a certain step we chose

2/3 simply because (3/2)𝑘𝑝 < 1 and it is a simple fraction. All one really needs is

𝑘𝑝 < 1. For a reader interested in elementary arguments that still yield a nontrivial

𝑘𝑝, we recommend the work of Blichfeldt [20] who obtained

∆𝑑 ≤
𝑑+ 2

2

(︃√︂
1

2

)︃𝑑

,

valid for all 𝑑 ≥ 1.

Now let 𝑓 denote the fraction of the number of points 𝜆𝑖 with associated Voronoï

cell volumes |𝑉 (𝜆𝑖)| ≥ 2/(3𝑛). Now we divide into two cases depending on the value

of 𝑓 .

1. Suppose 𝑓 ≤ 1/2. Here we have sufficient “dispersion” in the volumes of the
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Voronoï cells. We may apply Lemma 29 to immediately get a lower bound

∫︁
[0,1]𝑑

|𝑧 − 𝑓(𝑧)|2 ≥ 𝑛
−2
𝑑 𝑐𝑑

1

2

(︃(︂
2

3

)︂1+ 2
𝑑

+

(︂
4

3

)︂1+ 2
𝑑

)︃
, (4.10)

where 𝑐𝑑 is the NSM of the ball. This covers the first term of our basic approach

outlined in Lemma 28.

2. Now suppose 𝑓 > 1/2. Here we no longer rely on “dispersion” of the volumes,

but instead use the fact that we have a nontrivial fraction of sufficiently “large”

Voronoï cells. We also know by (4.9) that a large fraction of points have short

minimum distance. These two sets must have a nontrivial intersection.

Mathematically, we need to choose 𝛾 appropriately. What we have is:

𝑟𝑖 ≤ 𝑟𝑑

(︂
1

1 − 𝛾
𝑘𝑑𝑝

1

𝑛

)︂
,

and we will make the argument of 𝑟𝑑 match [2/(3𝑛)] ((3/2)𝑘𝑝)
𝑑 for example. We

chose 3/2 simply because (3/2)𝑘𝑝 < 1. We therefore take

𝛾𝑑 , 1 − 3

2

(︂
2

3

)︂𝑑

≥ 5

9
,

since we may take 𝑑 ≥ 3. For sufficiently large 𝑑, we thus get

∫︁
[0,1]𝑑

|𝑧−𝑓(𝑧)|2 ≥ 𝑛− 2
𝑑

(︃
(𝛾𝑑 +

1

2
− 1)𝜅

(︂
𝑑,

3

2
𝑘𝑝

)︂− 𝑑
2

+

(︂
3

2
− 𝛾𝑑

)︂
𝑐
− 𝑑

2
𝑑

)︃− 2
𝑑

+𝑜(𝑛− 2
𝑑 ),

(4.11)

where the little 𝑜 is with respect to 𝑛 and 𝑑 is fixed.

Combining (4.10) and (4.11) gives us Theorem 10.

Remark 9. No attempt has been made to optimize the parameters of Theorem 10.

Part of the difficulty lies in understanding quantities like 𝜅(𝑑, 𝑟). The astute reader

may, for example, conjecture that 𝜅(𝑑, 𝑟) = 𝜈(𝑑, 𝑟), which would follow from the

natural conjecture that 𝜈(𝑑, 𝑟) is decreasing in 𝑟 for 𝑟 ∈ [0, 1]. We do not have a proof
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of this statement. Indeed, more generally, we do not have a good grasp on the NSM of

objects derived in natural fashions from balls, such as the 𝜉(𝑑, ℎ) of Conjecture 2. This

difficulty extends to our subsequent discussion in subsection 4.3.4 on lattice quantizers

as well. It is also clear that 𝑑 being sufficiently large can be replaced by 𝑑 ≥ 2 as long

as one uses a non-asymptotic sphere packing bound.

Let us now turn to the study of lattice quantizers, where we generalize the work of

Tóth/Newman on the optimality of the hexagonal lattice quantizer for 𝑑 = 2 among

all quantizers, and not just lattice ones!

We believe that the best way to understand our generalization of is by first ex-

amining the original work of Tóth/Newman [116], [88]. More precisely, we follow

Newman’s presentation essentially verbatim as it is both mathematically simpler and

also available readily in English. We do not know of any essential simplification to

his argument, presented in the following subsection 4.3.3.

4.3.3 Tóth/Newman’s hexagon theorem

Theorem 11. Let 𝑆 be the unit square [0, 1]2, and 𝑓(𝑍) any function on 𝑆 taking at

most 𝑛 distinct values, i.e. an 𝑛-level quantizer. Then,

∫︁
𝑆

|𝑧 − 𝑓(𝑧)|2𝑑𝑧 > 𝜎

𝑛
, where 𝜎 =

5

18
√

3
.

Recall that Voronoï cells form a partition of 𝑆, bounded by straight line segments.

We prove a Lemma regarding the number of edges formed by any partition of 𝑆 into

convex polygons (not necessarily Voronoï!) as a direct consequence of Euler’s theorem

on planar graphs:

Lemma 30. Let 𝑆 be divided into 𝑘 convex polygons in any manner, and let 𝐸 denote

the total number of edges. Then 𝐸 ≤ 3𝑘 + 1.

Proof of Lemma 30. At each vertex 𝑣 we let 𝑚𝑣 be the number of edges meeting at

it. By double counting, 2𝐸 =
∑︀

𝑣𝑚𝑣. Furthermore, 𝑚𝑣 ≥ 3 at all 𝑣 except possibly
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at the corners of the square 𝑆 due to convexity of the polygons. Thus,

2𝐸 =
∑︁
𝑣

𝑚𝑣 ≤ 2 × 4 + 3

[︃∑︁
𝑣

(𝑚𝑣 − 2)

]︃
= 6𝐸 − 6𝑉 + 8,

where 𝑉 is the total number of vertices. By Euler’s theorem, 𝐸 − 𝑉 = 𝑘 − 1, so the

proof is complete.

We now apply Lemma 30 to a slightly modified Voronoï diagram, where we par-

tition the Voronoï cells further into right and obtuse angled triangles according to a

certain procedure described below and prove the following Lemma.

Lemma 31. Let 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑛 denote the quantizer outputs. Let 𝑉 (𝜆𝑖), 1 ≤ 𝑖 ≤ 𝑛

denote their respective Voronoï cells. For each 𝑉 (𝜆𝑖), draw in it all the line segments

from 𝜆𝑖 to the vertices of 𝑉 (𝜆𝑖). Also draw in all the perpendiculars from 𝜆𝑖 to the

edges of 𝑉 (𝜆𝑖), possibly extended, and terminate these at the boundary of 𝑉 (𝜆𝑖). This

construction procedure subdivides the Voronoï cells into triangles, each of which has

a right or obtuse angle.

On performing this procedure over all the 𝑉 (𝜆𝑖), we end up with triangles 𝑇1, 𝑇2, . . . , 𝑇𝑁 ,

and vertex angles formed at the corresponding 𝜆𝑖 that we call 𝜃1, 𝜃2, . . . , 𝜃𝑁 . Then,

𝑁 ≤ 12𝑛− 4.

Proof of Lemma 31. Let 𝑁𝑖 be the number of triangles 𝑇𝑘 formed through the subdi-

vision process given above on 𝑉 (𝜆𝑖). Let 𝐸𝑖 be the number of edges of 𝑉 (𝜆𝑖). Once

again, by a double counting argument (taking care of the boundary of 𝑆), we have

∑︁
𝑖

𝐸𝑖 = 2𝐸 − (number of edges on boundary of 𝑆) ≤ 2𝐸 − 4.

But then

𝑁 =
∑︁
𝑖

𝑁𝑖 = 2
∑︁
𝑖

𝐸𝑖 ≤ 4𝐸 − 8 ≤ 12𝑛− 4,

where in the last inequality we used Lemma 30.
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We now show that the NSM of a triangle 𝑇𝑘 about its vertex is lower bounded by

that of a right angled triangle with the same vertex angle 𝜃𝑘.

Lemma 32. Define

𝜑(𝜃) ,
3 tan(𝜃)

3 + tan2(𝜃)
. (4.12)

If 𝑇 is any right or obtuse triangle and 𝜆 is a vertex of 𝑇 with acute vertex angle 𝜃,

then ∫︁
𝑇

|𝑧 − 𝜆|2𝑑𝑧 ≥ |𝑇 |2

𝜑(𝜃)
.

Proof of Lemma 32. The proof is essentially by a geometric comparison with a suit-

able right angled triangle with the same vertex, same vertex angle, and same area.

The details are given below.

Let 𝑒 be the edge of 𝑇 whose endpoints are 𝜆 and the right or obtuse vertex of 𝑇 ,

let 𝑓 be the other edge of 𝑇 containing 𝜆, and finally let 𝑔 be the third edge. From

some point 𝑥 on 𝑓 , we drop a perpendicular to 𝑒 (possibly extended) and call the foot

of the perpendicular 𝑦. We choose 𝑥 such that the right angled triangle formed by

𝜆, 𝑥, 𝑦 has the same area as 𝑇 ; this is what we mean by the “geometric comparison”

alluded to above. Let us call this right angled triangle 𝑈 . Let the intersection of 𝑥𝑦

with 𝑔 be 𝑧0.

It is clear that

∀𝑧 ∈ 𝑇 − 𝑈, |𝑧 − 𝜆| ≥ |𝑧0 − 𝜆|,

∀𝑧 ∈ 𝑈 − 𝑇, |𝑧 − 𝜆| ≤ |𝑧0 − 𝜆|.

Thus, with the integrand |𝑧 − 𝜆|2 and the implicit Lebesgue measure, we have

∫︁
𝑇

=

∫︁
𝑇∩𝑈

+

∫︁
𝑇−𝑈

≥
∫︁
𝑇∩𝑈

+

∫︁
𝑈−𝑇

=

∫︁
𝑈

=
|𝑈 |2

𝜑(𝜃)
,

where for the last equality one performs a direct calculation and is indeed how one

comes across 𝜑 in the first place. The proof is complete since by construction |𝑈 | =

|𝑇 |.
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We now explicitly note that 𝜑 is concave:

Lemma 33. 𝜑 governed by (4.12) is concave on
(︀
0, 𝜋

2

)︀
.

Proof of Lemma 33. One may readily calculate

𝜑′′(𝜃) =
−48 sin3(𝜃) cos(𝜃)

(cos(2𝜃) + 2)3
,

and the nonpositivity on (0, 𝜋/2) is obvious.

Remark 10. We are not satisfied with the proof of Lemma 33 above as it is not

conceptual enough and relies on a direct calculation. The reader may not view this

as a defect right now since the differentiation and associated concavity check is easily

observed above. However, in our efforts to generalize this method to 𝑑 ≥ 3, we run

into a nontrivial assertion of concavity that we are unable to prove (Conjecture 4),

but can simulate to whatever precision we want on a computer. The nontriviality of

Conjecture 4 is ultimately why we must still leave Conjecture 2 as a Conjecture, and

not a Theorem. We note that neither Newman [88] (who asserted the concavity of 𝜑

as defined above) nor Tóth [116] (who had a slightly different 𝜑 but relied on concavity

as well) have a more elegant proof. We therefore consider it worthwhile to find an

alternative proof.

All the pieces are now in play to prove the “hexagon” Theorem 11:

Proof of Theorem 11. Consider the equation 𝜑(𝜃) = 𝜃
2𝜋𝜎

. Equality holds at 𝜃 = 0 and

𝜃 = 𝜋
6
, so by concavity, we immediately get

𝜑(𝜃) <
𝜃

2𝜋𝜎
(4.13)

on
(︀
𝜋
6
, 𝜋
2

)︀
. We may thus write, by Jensen’s inequality,

𝑁∑︁
𝑘=1

𝜑(𝜃𝑘) ≤ 𝑁𝜑

(︂∑︀
𝜃𝑘
𝑁

)︂
= 𝑁𝜑

(︂
2𝜋𝑛

𝑁

)︂
< 𝑁

𝑛

𝜎𝑁
=
𝑛

𝜎
. (4.14)
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In the second inequality we used Lemma 31 to write 𝑁 < 12𝑛, and we combined this

with the above (4.13).

We complete the proof by an application of Cauchy-Schwarz. Using the bound (4.14),

we have ∫︁
𝑆

|𝑧 − 𝑓(𝑧)|2 ≥
𝑁∑︁
𝑘=1

|𝑇𝑘|2

𝜑(𝜃𝑘)
≥ (
∑︀

|𝑇𝑘|)2∑︀
𝜑(𝜃𝑘)

≥ 𝜎

𝑛
.

4.3.4 Conjectured bound for lattices

As remarked upon earlier, our approach to improved lower bounds for lattice quan-

tizers is best described as a generalization of the preceding subsection 4.3.3. Our

thinking may be described as follows:

1. We can not rely on Euler’s theorem to get upper bounds on facet counts for

𝑑 ≥ 3. Our solution is to focus in on lattice quantizers only, and rely on the

original work of Minkowski [84, §6] and independently Voronoï [121, §48] for an

upper bound on the facet counts in this case. We note that one can generalize

this to a union of 𝑘 translates of a lattice quantizer by the work of Delone and

Sandakova [34], indeed this is where the 𝐹𝑑,𝑘 of (4.6) comes from.

2. We need to think of a relevant decomposition of Voronoï polyhedra to which we

can apply the concavity considerations described in the proof of Theorem 11.

There are two natural candidates.

One is closer in spirit to the work of Newman [88], and decomposes the Voronoï

polyhedra into orthosimplices. Here, one needs upper bounds not just on facet

counts, but also lower dimensional faces of the polytope. These are also due

to Voronoï [121, §65], and we give these bounds in a remark later 11. The

decomposition into orthosimplices was our first attempt. However, the technical

difficulties of coming up with a good lower bound on the second moment with

respect to the vertex of the orthosimplex, subject to fixed solid angle (as opposed

to regular angle) and analogous to Lemma 32, defeated us. More importantly,
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even if we could resolve these difficulties, we believe that the conjectured bound

following such an approach is weaker than that of the second candidate described

below.

Our second candidate is closer in spirit to the earlier work of Tóth [116]. Here,

we do not construct perpendiculars, but simply use the edges connecting the

quantizer points to the vertices of the Voronoï cells. We do not have orthosim-

plices, but rather pyramids on top of each of the facets of the Voronoï cells

for 𝑑 ≥ 3. In Tóth’s case for 𝑑 = 2, these are triangles. Tóth showed by

a geometric comparison inequality similar in spirit to Newman’s above in the

proof of Lemma 32 that one could lower bound the NSM about the vertex by

that of an isosceles triangle with the same vertex angle. Our candidate for the

appropriate generalization of the isosceles triangle to 𝑑 ≥ 3 is a right circular

cone of the appropriate solid angle (Conjecture 3). Here, we are able to obtain

much more significant progress, such as a reduction of this Conjecture 3 to a

technical inequality given in Conjecture 5. However, even if we could prove

Conjecture 5, we are still currently defeated by the analog of the concavity of

𝜑 (Lemma 33) for 𝑑 ≥ 3, expressed as Conjecture 4. The rest of the machinery

carries through naturally, with Cauchy-Schwarz replaced by Hölder’s inequal-

ity. The end result of this reasoning is our conjectured lattice NSM lower bound

given by Conjecture 2.

Let us now spell out some of the details. We emphasize the conceptual aspects

and leave the missing technicalities as conjectures (specifically Conjectures 3 and 4).

In the subsequent subsection 4.3.5, we detail some nontrivial progress towards these

conjectures and also justify why they may be verified readily on a computer even if

we do not have a proof yet.

For lattices, one may examine a single Voronoï cell. By examining Z𝑑 mod 2

component-wise, Minkowski [84, §6] and Voronoï [121, §48] independently proved

Lemma 34 (Minkowski/Voronoï upper bound on facet count). For a lattice Λ, the
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number of facets of a Voronoï cell 𝐹 (Λ) satisfies

𝐹 (Λ) ≤ 𝐹𝑑 , 2(2𝑑 − 1).

In order to prove Lemma 34, we have

Definition 16. A relevant vector 𝑣 for a lattice Λ is a vector in Λ such that 𝑣 is a

normal for one of the faces of the Voronoï cell 𝑉 (0).

We now prove a Lemma that characterizes relevant vectors. One can consult the

originals [84], [121] for a proof. Instead we follow the exposition of the far more

readily available book by Conway and Sloane [30, Thm. 10].

Lemma 35 (Minkowski/Voronoï characterization of relevant vectors). A nonzero

vector 𝑣 ∈ Λ is relevant iff ±𝑣 are the only shortest vectors in the coset 𝑣+ 2Λ. Here,

2Λ is the dilation of Λ by the factor 2.

Proof of Lemma 35. Note that every nonzero 𝑣 ∈ Λ determines a halfspace

𝐻𝑣 , {𝑥 ∈ R𝑑 : ⟨𝑥, 𝑣⟩ ≤ 1

2
⟨𝑣, 𝑣⟩},

and the Voronoï cell 𝑉 (0) is the intersection of all 𝐻𝑣. In fact it is the intersection of

just the 𝐻𝑣 where 𝑣 is relevant by the definition of relevance.

Let us prove the “only if” direction first. Suppose 𝑣 ≡ 𝑤 (mod 2Λ), 𝑣 ̸= ±𝑤,

and suppose without loss of generality that |𝑤| ≤ |𝑣|. Then 𝑡 = (𝑣 + 𝑤)/2, 𝑢 =

(𝑣 − 𝑤)/2 are also nonzero vectors in Λ. Now, if 𝑥 ∈ 𝐻𝑡 ∩𝐻𝑢, then we have ⟨𝑥, 𝑡⟩ ≤

(1/2)⟨𝑡, 𝑡⟩, ⟨𝑥, 𝑢⟩ ≤ (1/2)⟨𝑢, 𝑢⟩. Adding, expanding, and using ⟨𝑤,𝑤⟩ ≤ ⟨𝑣, 𝑣⟩, we get

⟨𝑥, 𝑣⟩ ≤ (1/2)⟨𝑣, 𝑣⟩. Thus 𝐻𝑣 is not needed to define the cell 𝑉 (0), and so 𝑣 is not

relevant.

Now let us prove the “if” part. Suppose 𝑣 is not relevant. Then, 𝑣/2 must lie on

or outside some 𝐻𝑤 for a nonzero 𝑤 ̸= 𝑣 ∈ Λ. In other words, ⟨𝑣, 𝑤⟩ ≥ ⟨𝑤,𝑤⟩. This

expression can be rewritten as |𝑣 − 2𝑤|2 ≤ |𝑣|2. But 𝑣 − 2𝑤 ̸= ±𝑣, and it is also in

the coset 𝑣 + 2Λ.
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Using Lemma 35, we may easily complete the proof of Lemma 34:

Proof of Lemma 34. Let 𝑣1, 𝑣2, . . . , 𝑣𝑑 be a basis for Λ. Then, every 𝑣 ∈ Λ can be

associated with a vector (𝑎1, 𝑎2, . . . , 𝑎𝑑) ∈ Z𝑑 by its basis expansion 𝑣 =
∑︀𝑑

𝑖=1 𝑎𝑖𝑣𝑖.

By the above Lemma 35, we see that we can have at most two relevant vectors

(corresponding to the sign choice in the ±) to each nonzero (mod 2) residue class.

There are 2𝑑 − 1 nonzero residue classes in Z𝑑, so we get the desired 𝐹𝑑 upper bound

on the face counts.

Remark 11. For a proof and generalization of the facet count upper bound to a union

of 𝑘 translates of Λ in English, see e.g., [39, p.181-183]. Alternatively, one can study

the original work of Delone and Sandakova [34]. Another interesting generalization

may be found in Voronoï’s original [121, §65], where he proves the upper bound

𝐾𝑣,𝑑 ≤ (𝑑+ 1 − 𝑣)∆𝑑−𝑣(𝑚𝑑)|𝑚=1,

where 𝐾𝑣,𝑑 is the number of faces of dimension 𝑣 for a Voronoï cell of a lattice Λ ⊂ R𝑑

and ∆(𝑓(𝑥)) = 𝑓(𝑥+ 1) − 𝑓(𝑥) is the finite difference operator. Taking 𝑣 = 𝑑− 1 we

recover the bound on the number of facets, which are nothing but 𝑑 − 1-dimensional

faces.

As an illustration of Lemma 34, consider 𝑑 = 2 where we get an upper bound of

6 on the number of sides of Voronoï polygons of a lattice. A very interesting aspect

that we saw earlier in Lemma 31 is that this upper bound of 6 carries over in the

“averaged” sense to non-lattice 2-dimensional vector quantizers, via an application

of Euler’s theorem for planar graphs. This aspect of Lemma 31 is the basic reason

why Tóth/Newman [116], [88] works as a bound for all quantizers for 𝑑 = 2, not just

lattice ones. We lose this generality when we go to 𝑑 ≥ 3.

The next ingredient we need is our hypothesis that right circular cones have min-

imal NSM about a vertex subject to a solid angle constraint.

Conjecture 3. Let 𝐻 be a fixed hyperplane not passing through 0 and 𝐵 ⊂ 𝐻 a

compact, convex set. Let the solid angle of the pyramid formed by 𝐵 and the vertex

139



0 about 0 be Θ. Then, the NSM of this pyramid is lower bounded by that of a right

circular cone with vertex 0 and the same solid angle Θ.

Let us denote the NSM of a right circular cone with solid angle Θ (in 𝑑 dimensions)

𝜑𝑑(Θ)−1, in analogy with Newman’s argument. As in Newman’s argument, we then

have a concavity hypothesis.

Conjecture 4. 𝜑𝑑(Θ)
𝑑
2 is concave on (0, 𝐴𝑑/2).

Assuming the veracity of Conjecture 3, we may proceed further with Newman’s

argument by replacing Cauchy-Schwarz with Hölder’s inequality and obtain

(︃
𝑁∑︁
𝑘=1

|𝐵𝑘|1+
2
𝑑

𝜑𝑑(Θ𝑘)

)︃ 𝑑
𝑑+2
(︃

𝑁∑︁
𝑘=1

𝜑𝑑(Θ𝑘)
𝑑
2

)︃ 2
𝑑+2

≥ 1.

Here, we are partitioning the Voronoï cells 𝑉 (𝜆1), 𝑉 (𝜆2), . . . , 𝑉 (𝜆𝑛) for the 𝑛 point

quantizer into pyramids formed by the 𝜆𝑖 and the 𝑑− 1–dimensional facets of 𝑉 (𝜆𝑖),

and call these 𝐵𝑘, 1 ≤ 𝑘 ≤ 𝑁 . Θ𝑘 are the respective solid angles of 𝐵𝑘 with their

associated 𝜆𝑗. The analog of 𝑁 ≤ 12𝑛 − 4 for Newman’s argument (Lemma 31) is

Lemma 34 which shows 𝑁 ≤ 2(2𝑑−1)𝑛+𝑜(𝑛). At 𝑑 = 2, we now have a coefficient of

6 in front of 𝑛 as opposed to 12, this is precisely because our partitioning is different

from that of Newman and is in fact more closely aligned with that of Tóth. The 𝑜(𝑛)

comes simply from boundary effects at the edge of the unit cube [0, 1]𝑑.

Finally, assuming the veracity of the concavity hypothesis (Conjecture 4), we may

then complete the argument for Conjecture 2.

4.3.5 Towards a proof for lattices

At this stage, we hope that the reader is convinced that the beef of our approach

towards lattices lies in establishing Conjectures 3 and 4. We now perform certain

reductions that may assist in proving these conjectures and may clarify certain con-

ceptual aspects. At the very least, they provide a method for computer verification.

Let us draw the normal 𝑛 to the hyperplane 𝐻 passing through the vertex 0, and

parametrize the convex body 𝐵 by a function 𝑓(𝜃), 0 ≤ 𝜃 < 𝜋
2
, 0 ≤ 𝑓 ≤ 1, and 𝑓

140



nonincreasing with 𝜃. Here, 𝜃 describes the circular locus of points 𝐻𝜃 lying on 𝐻

forming angle 𝜃 with the normal 𝑛. 𝑓(𝜃) denotes the relative measure of the body at

that angle, given by

𝑓(𝜃) =
|𝐻𝜃 ∩𝐵|
|𝐻𝜃|

.

The above definition makes it clear why 0 ≤ 𝑓 ≤ 1. The fact that 𝑓 is nonincreasing

follows at once from the convexity of 𝐵 and the that we may assume without loss

of generality that the foot of 𝑛 on 𝐻 lies inside 𝐵. For if the foot was outside 𝐵,

we may translate 𝐵 so that its center of mass is the foot of the perpendicular and

thereby not increase the NSM.

Let us now write down various quantities of interest in terms of 𝑓 .

First, the solid angle Θ formed at the vertex is

Θ =

∫︁ 𝜋
2

0

𝑓(𝜃)𝐴𝑑−1 sin𝑑−2(𝜃)𝑑𝜃. (4.15)

Next, the volume of the pyramid 𝑉 is

𝑉 =
𝑑− 1

𝑑

∫︁ 𝜋
2

0

𝑓(𝜃) tan𝑑−2(𝜃) sec2(𝜃)𝑑𝜃. (4.16)

And finally, the second moment 𝑀 is

𝑀 =
𝑑− 1

𝑑+ 2

∫︁ 𝜋
2

0

𝑓(𝜃) tan𝑑−2(𝜃) sec4(𝜃)𝑑𝜃. (4.17)

Observe that 𝑀,𝑉 are linear functionals in 𝑓 . Let us examine

𝑁𝑆𝑀− 𝑑
2 =

𝑉
𝑑+2
2

𝑀
𝑑
2

.

By Hölder’s inequality, it is immediately clear that

(︀
𝑡𝑉1 + 𝑡𝑉2

)︀ 𝑑+2
2(︀

𝑡𝑀1 + 𝑡𝑀2

)︀ 𝑑
2

≤ 𝑡
𝑉

𝑑+2
2

1

𝑀
𝑑
2
1

+ 𝑡
𝑉

𝑑+2
2

2

𝑀
𝑑
2
2

,
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where 𝑡 ∈ [0, 1], 𝑡 = 1 − 𝑡. Thus, 𝑁𝑆𝑀− 𝑑
2 is a convex function in 𝑓 , and we are

interested in maximizing it subject to fixed solid angle. Now note that the constraints

on 𝑓 (namely 0 ≤ 𝑓 ≤ 1,
∫︀
𝑓(𝜃)𝑑𝜇(𝜃) = 𝑐 for 𝜇 given by (4.15), and 𝑓 nonincreasing)

are all convex constraints, and thus we are maximizing a convex function over a

compact, convex, set. We may apply the classical Krein-Milman Theorem [73] to

therefore reduce the study to the extremal 𝑓 . We may focus on step functions without

loss as their closure coincides with that of the set of 𝑓 that we are interested in. The

extremal step functions are of the form

𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 0 ≤ 𝑥 < 𝑐1,

𝑎, 𝑐1 ≤ 𝑥 < 𝑐2,

0, 𝑐2 ≤ 𝑥,

(4.18)

where 𝑐1 ≥ 0, 𝑐1 ≤ 𝑐2 <
𝜋
2
, 0 < 𝑎 < 1, and 𝑓 must integrate out to the desired solid

angle Θ. At this stage one can certainly simulate the minimal NSM problem on a com-

puter, using the above consideration together with the equations (4.15), (4.16), (4.17).

We have thus numerically verified the truth of Conjecture 3 for various choices of 𝑑.

The concavity hypothesis Conjecture 4 has a direct route to numerical verification,

and we have performed this verification as well.

We now outline a possible route towards an analytical proof, at least for Conjec-

ture 3. A natural guess is that reducing the length of the [𝑐1, 𝑐2] interval in (4.18) and

increasing 𝑎 accordingly could monotonically decrease the NSM as 𝑎 increases. Once

translated into mathematics, we have the following conjecture (that would therefore

imply Conjecture 3). Conjecture 5 given below is one of the technical inequalities

alluded to earlier. The other inequality corresponds to verifying the concavity hy-

pothesis given in Conjecture 4.

Conjecture 5. Let 0 ≤ 𝑎 < 𝑏 < 𝜋
2
, and let 𝑑 ≥ 2. Then

∫︀ 𝑏

𝑎
sin(𝑡)𝑑−2(sec(𝑏)𝑑+2 − sec(𝑡)𝑑+2)𝑑𝑡∫︀ 𝑏

𝑎
sin(𝑡)𝑑−2(sec(𝑏)𝑑 − sec(𝑡)𝑑)𝑑𝑡

≥
(︂

1 +
2

𝑑

)︂ ∫︀ 𝑏

𝑎
sin(𝑡)𝑑−2 sec(𝑡)𝑑+2𝑑𝑡∫︀ 𝑏

𝑎
sin(𝑡)𝑑−2 sec(𝑡)𝑑𝑑𝑡

(4.19)
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Remark 12. A reader may wonder whether one needs to use the decreasing nature

of 𝑓 , which was slightly less trivial to see than 0 ≤ 𝑓 ≤ 1. Retracing our steps with

this larger convex set instead, one ends up with another inequality of similar flavor

to (4.19), given by

sec(𝑏)𝑑+2 − sec(𝑎)𝑑+2

sec(𝑏)𝑑 − sec(𝑎)𝑑
≥ 𝑑+ 2

𝑑

∫︀ 𝑏

𝑎
tan(𝑡)𝑑−2 sec(𝑡)4𝑑𝑡∫︀ 𝑏

𝑎
tan(𝑡)𝑑−2 sec(𝑡)2𝑑𝑡

. (4.20)

Unfortunately, (4.20) is false for 𝑑 > 3, though it does appear to be true for

𝑑 = 2, 3! Geometrically, this means that the NSM of an annular cone does not

necessarily decrease as the annulus is brought towards the normal while keeping the

solid angle fixed for 𝑑 ≥ 4. We do note that, not surprisingly, (4.19) is a weaker

inequality than the (too strong and incorrect) (4.20). The fact that (4.19) can be

deduced from the (incorrect for 𝑑 > 3!) (4.20) comes from the fact that

sec𝑑+2(𝑏) − sec𝑑+2(𝑥)

sec𝑑(𝑏) − sec𝑑(𝑥)

is increasing in 𝑥.

In our attempts to prove Conjecture 5, we attempted proving a more general state-

ment that also appears to be true numerically: Let

𝑓(𝛼, 𝛽; 𝑎, 𝑏) ,

∫︀ 𝑏

𝑎
sin(𝑡)𝛼(sec(𝑏)𝛽 − sec(𝑡)𝛽)𝑑𝑡

𝛽
∫︀ 𝑏

𝑎
sin(𝑡)𝛼 sec(𝑡)𝛽𝑑𝑡

. (4.21)

Then the claim is that 𝑓(𝛼, 𝛽; 𝑎, 𝑏) is monotonically increasing in 𝛽. One may also

favor a 𝑢 = sec(𝑡) substitution to convert this general statement into showing mono-

tonicity in 𝛽 for 1 ≤ 𝑎 ≤ 𝑏 <∞ of

𝑔(𝛼, 𝛽; 𝑎, 𝑏) ,

∫︀ 𝑏

𝑎
(𝑢2 − 1)

𝛼−1
2 𝑢−𝛼−1(𝑏𝛽 − 𝑢𝛽)𝑑𝑢

𝛽
∫︀ 𝑏

𝑎
(𝑢2 − 1)

𝛼−1
2 𝑢𝛽−𝛼−1𝑑𝑢

. (4.22)

Finally, we do note that although our “monotonicity approach” outlined in Con-

jecture 5 does not prove the concavity hypothesis given in Conjecture 4, it does still
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have at least one interesting consequence other than Conjecture 3, namely that

𝜑𝑑(Θ)
𝑑
2

Θ

is nonincreasing (take 𝑐1 = 0 in (4.18)). The astute reader may recall this as an

easy consequence of concavity (or equivalently a weaker variant thereof) that was also

utilized in Newman’s proof.

4.4 Discussion and Future Work

Our original impetus for undertaking the study of lower bounds on the minimum

mean squared error of vector quantizers was inspired by the following folklore

Conjecture 6. 𝐸8 and the Leech lattice are optimal vector quantizers in the mean

squared error, high resolution limit sense (𝐺𝑑) for 𝑑 = 8 and 𝑑 = 24 respectively.

Given the relatively recent resolution of the sphere packing problem and associ-

ated universal optimality phenomena for R𝑑, 𝑑 = 8, 24 [120], [27], [28], we believed

it worthwhile to study the main Conjecture 6. We note that there is fairly reason-

able numerical evidence in support of Conjecture 6 in [2], whose main contribution

is a gradient based optimization algorithm for quantizers, different from the classical

Lloyd-Max [79], [81] 2. Essentially, they perform a gradient descent on a parametriza-

tion of the space of lattices, and generalize the approach to quantizers formed by 𝑘

translates of a lattice. For 𝑑 = 8, 24, the algorithm ends up at 𝐸8 and the Leech

lattice for many choices of random starting point.

One may therefore view our contributions here as coming up with a different kind

of evidence based on more rigorous considerations. For example, as Table 4.4 shows,

the scaled NSM for 𝐸8 is ≈ 0.07168, while our conjectured lattice lower bound (4.5) is

≈ 0.07102. For 𝑑 = 24, the gap is larger, with our conjecture giving the lower bound

of ≈ 0.06561, and the Leech lattice yielding a performance of ≈ 0.06577.

2The Lloyd-Max algorithm goes back at least to Steinhaus [109].
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𝑑 [128] l.b. conj. Λ l.b. (4.5) [31] conj. l.b. u.b. [128] u.b.
1 .08333 .08333 .08333 .08333 .50000
2 .07958 .08019 .08019 .08019 .15915
3 .07697 .07773 .07787 .07854 .11580
4 .07503 .07580 .07609 .07660 .09974
5 .07352 .07425 .07465 .07563 .09132
6 .07230 .07298 .07347 .07424 .08608
7 .07130 .07192 .07248 .07273* .08248
8 .07045 .07102 .07163 .07168 .07982
9 .06973 .07026 .07090 .07110* .07778
10 .06910 .06959 .07026 .07081 .07614
16 .06657 .06689 .06759 .06830 .07053
24 .06475 .06497 .06561 .06577 .06722
∞ .05855 .05855 .05855 .05855 .05855

Table 4.1: Numerical values for various bounds on the NSM (divided by the dimension
𝑑) up to a couple of decimal places. Bold face denotes rigorously known sharp values.
* denotes non-lattice constructions [2]. “l.b.” and “u.b.” stand for “lower bound” and
“upper bound” respectively.

However, there is still a fair bit of work to be done in order to make (4.5) fully

rigorous. The work there has been encapsulated in the form of two Conjectures 3, 4.

It is also clear that we are quite far from establishing the folklore Conjecture 6 that

provides the answer for 𝑑 = 8, 24. We believe that establishing Conjecture 6 requires

new methods, and it would be pleasant if such methods could also extend to other

values of 𝑑 and thereby supersede our conjectured lower bound (4.5), our rigorous

general lower bound 10 (with tuned parameters), and Conway and Sloane’s conjec-

tured lower bound [31]. We believe that this search for new methods may in fact be

the most fruitful approach to establishing these conjectures.

Stepping back from the considerations of mean squared error and the high res-

olution limit, it is interesting to understand to what extent these methods can be

applied to other distortion measures.
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Chapter 5

Conclusion and Future Directions

When someone failed, another has succeeded; what was unknown in one

century, the next has discovered; science and the arts do not grind

themselves into uniformity, but gain shape and regularity by carving and

polishing repeatedly... What my own strength has not been able to

uncover, I cease not from working at and trying out and, by reshaping

and solidifying this new material, in moulding and heating it, I

bequeathe to him who follows some facility and make it the more supple

and malleable for him. The second will do the same for the third, which

is why difficulty does not make me despair, nor of my own weakness...

Michel de Montaigne, Les Essais, Livre II, Chapitre XII

Let us summarize the main contributions of this dissertation at a very high level.

We began by reviewing the notion of codes and anticodes in a metric space in Chap-

ter 2. We then proceeded to review the notions of pairwise potential energy, ground

states, and universal optimality. We also reviewed the notion of noise stability popu-

lar in theoretical computer science. We then reviewed and discussed Fourier analysis

on finite groups, and how one can derive certain linear programming bounds. We

used these bounds to prove that certain natural Boolean functions maximize noise

stability subject to an expected value constraint.

In Chapter 3, we considered the problem of maximizing the quality of reconstruc-

tion for a coded aperture imaging apparatus under a simple model. We described how
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this problem boils down to the question of how and to what extent can one shape the

magnitudes of the Fourier coefficients on Z/𝑛Z subject to an 𝑙∞ constraint in time.

We thus constructed a link with the “coefficient problem” in harmonic analysis, and

accordingly utilized Nazarov’s solution [86] in the resolution. We also showed how

one can make Nazarov’s solution algorithmically effective.

In Chapter 4, we considered the problem of finding improved lower bounds on

the mean squared error of vector quantizers in the so-called “high-resolution limit”

where one lets the number of quantizer points per unit volume tend to infinity. We

developed two approaches: one to handle lower bounds on lattice quantizers, and the

other to handle lower bounds on general quantizers. The lower bound we obtain for

general quantizers is rigorous, while the one for lattices rests on certain plausible and

easily numerically verified conjectures 3, 4 that we are currently unable to prove.

Throughout this dissertation, we have been guided by a couple of principles and

themes. In particular, we have been inspired by the research philosophy of Yuri

Vladimirovich Linnik. According to [66]:

“Linnik often liked to say that when starting a new area of research one should

select in it a difficult and neatly formulated problem: in trying to solve it, new

problems will crop up and the problem itself will serve as a touchstone for the methods

being used. This would lead step-by-step to the creation of a theory and of general

methods.”

In order to execute upon this program, in this dissertation we focused on topics

and problems with a rich history. This has the positive effect of allowing one to

focus on coming up with syntheses of methods as well as formulating “new” methods.

However, this may come at a cost of not addressing the most relevant problems

of our current era. Our general response to such a criticism is twofold. First, we

believe it shortsighted to lay judgement upon relevance based on our current era

as it is close to impossible to anticipate the future. Second, ultimately progress is

achieved through new methods and ideas. Problems that are classical, difficult, and

neatly formulated have been proven over time to be essentially as fruitful towards this

ultimate goal as the formulation of new fields and disciplines. With this view in mind,
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historical anecdotes and references are collectively another principal contribution of

this dissertation.

Each chapter of this dissertation closed with its own suggestions for future re-

search, and we do not wish to repeat specific technicalities here. As such, we close

with just a few, very high level, ideas:

1. One key underlying theme here was the use of Fourier analysis to attack prob-

lems of geometric character. Such a program has been pursued since the incep-

tion of Fourier analysis. However, we believe that we are still at a very early

stage here and anticipate substantial advances in the future. For example, the

linear programming bounds have been primarily used for coding theory ques-

tions. We have demonstrated in this dissertation that they can be used for

isodiametric questions (see also [124, 49]), and also vector quantization ques-

tions. Another illustration of the interplay is provided by hypercontractivity, a

topic which we do not explore in this dissertation. We look forward to a syn-

thesized, general point of view that encompasses both the linear programming

bounds and hypercontractivity.

2. Another theme here is the understanding of how “bulk” constraints in time

(such as 𝑙𝑝) translate into “fine-grained” constraints on frequency components.

For example, Nazarov’s theorem refers to the individual frequency components,

and not just their “bulk” characteristics that can be captured by e.g. 𝑙𝑞 norms.

These “bulk” quantities are covered by more classical theory on the 𝑙𝑝 → 𝑙𝑞

operator norms; see for example work on hypercontractivity. Can we obtain

further understanding of the fine-grained structure of the frequency compo-

nents? For example, can we usefully incorporate phase information instead of

just discussing magnitudes?

3. What are the broader scientific and engineering implications of answers and the

search for answers to the preceding items? We have no idea and we generally

devote greater energy to the preceding items instead as they are more easily

formulated. Nevertheless, we hope that the reader pleasantly surprises us!
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Appendix A

Proofs for Chapter 3

As remarked in the main text, Lemma 24 is really just a calculus exercise that offers

limited insight. For example, one can reduce this to studying a single variable function

of 𝑎, and finding its maximum. This may be easily done on a computer to whatever

degree of precision is desired, and such a numerical study has been performed in our

code:https://github.com/gajjanag/apertures.

Nevertheless, we give an unenlightening fully rigorous “analytical” proof below for

completeness. This argument naturally did not appear in our paper [8] due these

reasons as well as space constraints.

Proof of Lemma 24. First, one may compute

𝑓 ′
𝑎(𝑥) =

−2𝑎𝑥− 𝑥2 + 𝑎

(𝑎+ 𝑥)2
,

𝑓 ′′
𝑎 (𝑥) = −2𝑎(𝑎+ 1)

(𝑎+ 𝑥)3
.

Thus 𝑓𝑎 is a concave function since 𝑎 > 0. Furthermore, 𝑓𝑎(0) = 𝑓𝑎(1) = 0, so in fact

𝑓𝑎(𝑥) attains its maximum precisely at the root of 𝑓 ′
𝑎(𝑥) = 0 lying in [0, 1], namely

𝑥* =
√
𝑎2 + 𝑎− 𝑎. Plugging in this value, we get

𝑓𝑎(𝑥
*) = 2𝑎+ 1 − 2

√︀
𝑎(𝑎+ 1). (A.1)
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Let us first look at

𝑔(𝑎) ,
𝑓𝑎(𝑥

*)

𝑓𝑎
(︀
1
2

)︀ .
Using (A.1), we have the explicit expression

𝑔(𝑎) = (4𝑎+ 2)(2𝑎+ 1 − 2
√︀
𝑎(𝑎+ 1)).

We may differentiate to show that 𝑔 is certainly decreasing, since

𝑔′(𝑎) = −
2(2𝑎+ 1 − 2

√︀
𝑎(𝑎+ 1))2√︀

𝑎(𝑎+ 1)
< 0.

Thus, 𝑔(𝑎) < 𝑔(0) = 2. This proves 𝑀(𝑎, {1/2}) ≤ 2.

For 𝜌 = 1/4, we have a similar function

ℎ(𝑎) ,
𝑓𝑎(𝑥

*)

𝑓𝑎
(︀
1
4

)︀ .
Explicitly,

ℎ(𝑎) =
1

3
(16𝑎+ 4)(2𝑎+ 1 − 2

√︀
𝑎(𝑎+ 1)).

Differentiating, we get

ℎ′(𝑎) = −
4(−2𝑎− 1 + 2

√︀
𝑎(𝑎+ 1))(−4𝑎− 1 + 4

√︀
𝑎(𝑎+ 1))

3
√︀
𝑎(𝑎+ 1)

.

Examining the signs of the factors, we see that ℎ decreases on [0, 1/8], and then

increases. Thus on [0, 1/8], min(𝑔(𝑎), ℎ(𝑎)) ≤ min(ℎ(0), 𝑔(0)) = 4/3. For 𝑎 > 1/8, we

see that min(𝑔(𝑎), ℎ(𝑎)) ≤ 𝑔 (1/8) = 5/4 < 4/3. This proves 𝑀(𝑎, {1/4, 1/2}) ≤ 4/3.

For 𝜌 = 1/8, we have a similar function

𝑘(𝑎) ,
𝑓𝑎(𝑥

*)

𝑓𝑎
(︀
1
8

)︀ .
Explicitly,

𝑘(𝑎) =
1

7
(64𝑎+ 8)(2𝑎+ 1 − 2

√︀
𝑎(𝑎+ 1)).
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Differentiating, we get

𝑘′(𝑎) = −
8(−2𝑎− 1 + 2

√︀
𝑎(𝑎+ 1))(−8𝑎− 1 + 8

√︀
𝑎(𝑎+ 1))

7
√︀
𝑎(𝑎+ 1)

.

Examining the signs of the factors, we see that 𝑘 decreases on [0, 1/48], and then

increases. Thus on [0, 1/48], min(𝑔(𝑎), ℎ(𝑎), 𝑘(𝑎)) ≤ min(𝑔(0), ℎ(0), 𝑘(0)) = 8/7.

On [1/48, 1/8], min(𝑔(𝑎), ℎ(𝑎), 𝑘(𝑎)) ≤ min(𝑔(1/48), ℎ(1/48)) = 13/12 < 8/7. On

[1/8, 3/4], we see that min(𝑔(𝑎), ℎ(𝑎), 𝑘(𝑎)) ≤ ℎ (3/4) = 1.113 · · · < 8/7 = 1.14 . . . .

For 𝑎 > 3/4, we see that min(𝑔(𝑎), ℎ(𝑎), 𝑘(𝑎)) ≤ 𝑔 (3/4) = 1.043 · · · < 8/7. This

proves 𝑀(𝑎, {1/8, 1/4, 1/2}) ≤ 8/7. Note that there was nothing special about 3/4 in

the above proof. Any number in a certain interval tuned appropriately to the above

argument would work.
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